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Abstract

Traffic assignment models – applicability and efficacy

Priyadarshan Nandkumar Patil, Ph.D.

The University of Texas at Austin, 2022

Supervisor: Stephen D. Boyles

This dissertation is concerned with the traffic assignment problem (TAP), an important tool

in transportation planning. We first study a theoretical extension of TAP which incorporates

symmetric interactions in the link travel costs. In particular, we prove the theoretical

convergence of conventional solution methods for this problem, and analyze convergence

behavior for these methods. We also show how a set of real world interactions such as

merge models can be modeled using these type of symmetric interactions. Second, we

apply these findings to a practical case study of railroad electrification, formulated as a rail

network design problem. We solve this problem on a large network representing the North

American railroad network, and analyze the solutions to provide policy recommendations.

Wemodel the interactions between diesel- and electric-goods flow as a symmetric congestion

cost and a separable fuel/crew cost. Third, we study the empirical behavior of TAP under

input uncertainty. Specifically, we analyze the effects of three types of input errors (uniform,
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origin- or destination- specific, spatially correlated) on network metrics, such as total system

travel time or congestion, at equilibrium. Empirical bounds for these output metrics are

identified for various levels of input error. We apply these findings to a case study to

demonstrate potential usage for planning purposes. Lastly, we conduct a comprehensive

empirical study on the convergence behavior of traffic assignment convergence metrics. We

analyze five commonly used network metrics at various convergence levels, for different

solution algorithms, and identify concrete thresholds for convergence. We also show the

relationship between different convergence criteria metrics, allowing for transfer of these

thresholds to different metrics.
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Chapter 1

Introduction

Traffic assignment is a common tool in transportation planning, and predicts how travelers
will choose routes accounting for congestion effects. It is used in long-term planning, as
the final step of the traditional four-step model, to assist in decision-making based on link
flows, select link analysis, or shortest-path analysis. It also appears as a sub-problem in
network design, toll-setting, and other related bi-level optimization problems. Despite many
advances in dynamic trafficmodeling, static assignment remains common in current practice.
And despite advances in technology and algorithmic efficiency, computation times are still
a relevant issue as agencies move to more detailed, multiclass models, or when assignment
is a subproblem in a larger iterative scheme (feedback models, trip table estimation, network
design, and so forth). This proposal document therefore focuses primarily on the static
traffic assignment problem (TAP) as it is traditionally formulated.

1.1 Why is static traffic assignment still relevant?

Static traffic assignment has been studied for over five decades now, starting with the convex
optimization formulation by Beckmann et al. (1956) and described at length in Patriksson
(2015) and Boyles et al. (2020). With significant advances in traffic flow theory and traffic
assignment in the interim, including the development of dynamic traffic assignment and
micro-simulation techniques, it is worth asking whether the traditional traffic assignment
problem is still worth studying. Despite the important roles that these other methods play
in transportation analysis, there are still several settings where static assignment remains a
valuable tool.
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Well-known advantages of static assignment include a standard formulation, effi-
cient and provably correct solution algorithms, and guarantees of equilibrium existence and
uniqueness. The latter concerns are not strictly mathematical, but have important implica-
tions for practice — it is unclear how projects should be evaluated or ranked if multiple,
potentially very different solutions exist, or none at all.

A less-appreciated advantage is its greater robustness to errors in input data, such as
origin-destination matrices or link and node parameters. Many dynamic traffic assignment
models feature queue spillback, which is a significant contributor to traffic congestion in the
field. However, spillback introduces discontinuities into the assignment process, potentially
amplifying any error or noise in the model inputs. Boyles and Ruiz Juri (2019) showed
that when the error in the trip table is sufficiently large, a model without spillback actually
produces a smaller absolute error in delay estimations than amodelwith spillback. Relatedly,
static models are easier to calibrate; despite advances in travel demandmodeling, forecasting
a time-dependent trip table in a large network remains highly challenging.

Static assignment can also be solved in a shorter amount of time. Even as computa-
tional resources expand and more efficient algorithms are developed, in the amount of time
required to run a single dynamic assignment it is possible to run multiple static assignments.
In applications requiring hundreds or thousands of assignment runs — examples include
Monte Carlo simulation to simulate distributions over input parameters (Waller et al., 2001;
Zhao and Kockelman, 2002; Ukkusuri et al., 2007; Duthie et al., 2011), sensitivity analysis
(Boyles, 2012; Jafari et al., 2017), trip table estimation (Yang, 1995; Lundgren and Peterson,
2008), network design (Yang, 1997; Yang and Bell, 1998; Josefsson and Patriksson, 2007),
network pricing (Yang and Lam, 1996), and other bilevel optimization problems (Yin, 2000)
— the computational advantages of static assignment are compelling, if for no other reason
than a preliminary screening of alternatives to form a “shortlist” for more detailed modeling.

We lastly point out a recent line of research showing how a variety of static and
dynamic models can be generalized into a single common framework (Bliemer et al., 2017;
Bliemer and Raadsen, 2020), suggesting that research into one type of traffic assignment
model may have relevance to the other as well.

For all the reasons above, static assignment remains a commonly-used tool in trans-
portation planning practice. To be clear, none of this is to argue that static assignment should
be universally applied. In applications where the input data are known with high precision,
detailed congestion information is essential, and computation times are not constraining
(e.g., present-day studies of work zone impacts), dynamic traffic assignment (DTA) or even
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microsimulation are likely superior tools. Yet there remain applications where static as-
signment is preferred, as when inputs are poorly known, or when rapid assessment of a
large number of alternatives is preferred to an in-depth assessment of a few (e.g., long-range
regional planning, bilevel optimization), and it is such applications that this study has in
mind.

1.2 Taking a fresh look at symmetric and asymmetric TAP

Symmetric TAP (S-TAP) and Asymmetric TAP (A-TAP) have had significant research
interest in the 80s and 90s, but dwindled soon after. These models aimed to incorporate
more realism in TAP, trying to model junction interactions, multi-class traffic, and traffic
interactions. However, theywere limited by the TAP advances and computational limitations
of the time. A-TAP traded the advantages of TAP (convergence properties and uniqueness,
optimization formulation, quick runtimes) while incorporating assumptions considered less
realistic than DTA assumptions (queue spillback, merge models, etc.) This led to TAP and
DTA being primary research foci.

TAP has since seen significant theoretical and computational advances, as well as
widespread usage for planning. As we show, some of these advances are directly applicable
to S-TAP and A-TAP, allowing retention of convergence properties and computational
advances, while allowing modelers greater freedom. DTA has been the de-facto choice
for ”realistic” modeling, but studies show that input noise and queue spillback introduces
significant errors (Zhang et al., 2013; Boyles and Ruiz Juri, 2019). Additionally, multiple
applications require detailed modeling of select links/intersections only, where applying
DTA for the entire network is excessive in terms of time, data, and resources required. This
presents use-cases for S-TAP and A-TAP where these select links/intersections (freeways,
on-ramps, flyovers, arterials, etc.) are modeled with significant interactions, and the rest
(such as neighborhood roads and other minor links) are modeled at a high level.

TAP has also seen advances incorporating queueing behavior and traffic flow theory
assumptions. Huntsinger and Rouphail (2011) conduct link performance function analysis
based on queueing and bottleneck analysis. Bliemer et al. (2012) present a quasi-dymanic
traffic assignment, i.e., static traffic assignment with queueing and hierarchical clustering
analysis of historical data. Bliemer and Raadsen (2019) present TAP with residual queues
and spillback, further adding traffic dynamics into TAP. These advances, in conjunction
with link interactions, provide reason for reconsideration of S-TAP and A-TAP research.
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1.3 Notation and Formulation

Consider a directed network with a set of links �, and a set of zones / . For each link
(8, 9) ∈ �, let ;8 9 denote its physical length, and C8 9 its travel time, assumed to be a function
of its flow G8 9 alone. For each origin A ∈ / and destination B ∈ / , let 3AB denote the demand
for travel between these zones, and let ΠAB denote the set of network paths connecting these
zones. Further, let Π be the set of all network paths. For a given path c, the number of
travelers choosing that path is given by ℎc .

The classical formulation of TAP identifies a network state which reflects traveler
behavior (all travelers choose a shortest path between their origin and destination) and
congestion effects (these shortest paths depend on the choices made by other travelers).
Under mild regularity assumptions, such a network state can be identified by solving the
following convex program (Beckmann et al., 1956):

min
x,h

∑
(8, 9) ∈�

∫ G8 9

0
C8 9 (G)3G (1.1)

subject to:

G8 9 =
∑

c∈Π:(8, 9) ∈c
ℎc ∀(8, 9) ∈ � (1.2)∑

c∈ΠAB
ℎc = 3AB ∀(A, B) ∈ /2 (1.3)

ℎc ≥ 0 ∀c ∈ Π (1.4)

If the link performance functions are strictly increasing, the objective function is
strictly convex, and thus has a unique minimum solution in the link flows, which we denote
by x∗. This solution is called the user equilibrium (UE) state. We say that a path c is used
in a solution to TAP if ℎc is strictly positive, and define Π+(h) to be the set of used paths at
a given solution.

Static TAP can also be formulated as a variational inequality in path flows. A path
flow vector ℎ̂ satisfies the principle of user equilibrium if and only if it satisfies the following
variational inequality:

2(ĥ) · (ĥ − h) ≤ 0 ∀h ∈ Π (1.5)
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In general, the UE path flow solution is not unique, since many path flow vectors
h can generate the same link flow vector x. The most likely path flows are the unique
solution (denoted h∗) to the following optimization problem, representing entropy maxi-
mization (Rossi et al., 1989):

max
h

−
∑

(A ,B) ∈/2

∑
c∈ΠAB

ℎc log ℎc (1.6)

subject to:

∑
c∈Π:(8, 9) ∈c

ℎc = G
∗
8 9 ∀(8, 9) ∈ � (1.7)∑

c∈ΠAB
ℎc = 3AB ∀(A, B) ∈ /2 (1.8)

ℎc ≥ 0 ∀c ∈ Π (1.9)

Note the constraint that the path flows must generate the UE link flows x∗. The most
likely path flows use as many paths as possible given the user equilibrium state (Bar-Gera,
2006). Additionally, the formula for entropy calculation can be expressed in terms of link
flows obtained from an origin-based assignment as follows:

� (x) = −
∑
?∈/

∑
(8, 9) ∈�

G (8, 9) , ? log
(
G (8, 9) , ?

G 9 , ?

)
(1.10)

where, G (8, 9) , ? is the flow on link (8, 9) from origin ? and G 9 , ? is the flow through
node 9 originating at ?.

Now instead assume that the link performance functions depend on multiple links’
flow. For generality, we write C0 (x) to express dependence on (potentially) every other link
flow, although in practice each link’s travel time depends only on a few other links. If these
functions are differentiable, and the Jacobian of twith respect to x is symmetric, equilibrium
flows correspond to stationary points of the function

min
x,h

∮ ®G

0
C8 (®B)3®B (1.11)

relative to the same constraints as TAP, as can be seen by writing the optimality conditions.
We will refer to this optimization problem as S-TAP. The symmetry requirement on the
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Jacobian is critical. Otherwise, the line integral is path-dependent and the function as stated
is not well-defined, and the model would need to be formulated and solved using variational
inequality (VI) methods (Facchinei and Pang, 2003). We will refer to the asymmetric case
as A-TAP.

If this Jacobian is additionally positive definite, thenwe say that the link performance
functions are monotone (note that this is stronger than requiring each C0 to be monotone in
each link flow separately). In such a case, the objective (1.11) is a strictly convex function (its
Hessian is the Jacobian just described), and equilibrium again exists and is unique. If the link
performance functions are not monotone, the function (1.11) is not convex, and multiple
stationary points (and therefore equilibria) may exist, with the minima corresponding to
stable equilibria. For example, see Figure 1.1. There are three equilibria corresponding
to the flow vectors (0,10), (5,5), and (10,0); the first and third of these are stable, and the
second is unstable. For derivations of the above results and more discussion, see the books
by Patriksson (2015) and Boyles et al. (2020).

(a) Example network

(b) Objective function visualization

Figure 1.1: S-TAP example with multiple extreme points

The optimization formulation in Equation 1.11 is not valid for A-TAP. As stated
before, the line integral is path dependent in the absence of a symmetric Jacobian matrix,

21



invalidating the optimization formulation. Therefore, the following variation inequality
formulation is used. The equilibrium flow vector G∗ satisfies the following inequality for all
feasible flow vectors G.

C (x*) · (x* − x) ≤ 0 ∀x ∈ X (1.12)

Under conditions of positive definite Jacobian (strict monotonicity of cost vectors), this VI
has a unique solution. S-TAP and A-TAP can also be formulated as a variational inequality
in path flows, satisfying the formulation in Equation 1.5

1.4 Overview and contributions

The rest of the proposal document is organized as follows. Chapter 2 presents the state-
of-the-art for static TAP, S-TAP, and A-TAP solution methods, and existing guidance about
convergence criteria. Chapter 3 presents the proof of convergence for convex combination
algorithms under symmetric link interactions, and the flow shift formula derivation for path
flow equilibrating algorithms. This chapter also explores the computational behavior and
effects of link interaction degree for S-TAP and A-TAP, and presents specific situations
(merges) where DTAmodels are used to construct S-TAP/A-TAP models. Chapter 4 formu-
lates the budget-constrained rail network electrification problem as a bi-level optimization
problem, where the lower level problem is a symmetric traffic assignment problem for goods
flow. This is a novel way of looking at the rail network electrification problem and con-
necting it to the traffic assignment problem. The costs and network parameters incorporate
electrification costs; fuel, locomotive, and operational costs; and train resistance costs. The
North American railroad network is used to demonstrate our heuristic and draw insights.

Chapter 5 characterizes of the effect of uniform, OD-specific, and spatially correlated
demand errors on three common network metrics (equilibrium system travel time, system
congestion, and vehicle miles traveled) for static TAP. We also observe the effects on a
case study network, showing potential for planning purposes. Chapter 6 investigates the
convergence behavior of five commonly used network performance metrics for static TAP,
and we observe thresholds for ”convergence” of various metrics. We also show results using
these thresholds for various TAP scenarios (multi-class assignment, bi-level programs, etc.)
as well as the relationship between three common convergence metrics. Lastly, we conclude
with a summary of the key contributions and avenues for future work.
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Chapter 2

Background

2.1 Static TAP

The convex programming formulation for TAP was proposed by Beckmann et al. (1956)
based onWardrop’s user equilibriumprinciple (Wardrop andWhitehead, 1952). Adaptations
of general convex program methods as well as evolution of specialized algorithms led to a
variety of solution methods for TAP. Books by Patriksson (2015) and Boyles et al. (2020) are
good resources for detailed reading on the evolution of the field, as well as state-of-the-art.
The major advances in the solution methods are detailed below.

The first class of solution methods for static TAP is link based methods. Given a
current flow solution, the algorithms identify a target link flow solution, update flows using
a step size, and then check for convergence. Until the convergence criteria is satisfied, the
algorithms keeps operating. The advantages are low memory requirements and ease of
implementation, but they require a long time to converge on large networks. The different
algorithms differ in their choice of search direction and step size. MSA (Powell and Sheffi,
1982) chooses the current shortest path all-or-nothing assignment as target flows, with a
fixed step size. Frank-Wolfe algorithm (Frank and Wolfe, 1956) chooses the step size
adaptively, solving a restricted VI with feasible set as the line segment between current and
target flows. Conjugate FW (Mitradjieva and Lindberg, 2013) algorithm improves the target
flow selection by choosing the new search direction as conjugate (orthogonal) to previous
search directions. Powell and Sheffi (1982) provide four necessary conditions for algorithm
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convergence using predetermined step sizes in addition to the proof of convergence forMSA.
Algorithm 1: Framework for link-based algorithms

Generate an initial feasible link flow solution;
while convergence criteria not met do

Generate a target link flow solution;
Update the current link flow solution using some step size;
Calculate the updated link travel times and convergence criteria;

end

Path-based algorithms evolved with improvements in computation power and mem-
ory, aiming to tackle the disadvantages of link-based methods. Two renowned algorithms
are gradient projection (Jayakrishnan et al., 1994) and projected gradient (Florian et al.,
2009). Path based methods track the used path sets, find the shortest paths every iteration,
and shift flows within the path set for each origin-destination (OD) pair, repeating these
steps till convergence. The gradient projection algorithm moves towards the negative of the
gradient direction (direction of steepest ascent) and then uses projection to ensure feasibil-
ity. The projected gradient algorithm projects the gradient direction onto the solution set
polyhedron, and then utilizes this search direction for target flows. Some other algorithms
in this class are disaggregate simplicial decomposition algorithm (Larsson and Patriksson,
1992), path based FW (Chen et al., 2002), conjugate gradient projection (Lee et al., 2003),
slope-based methods (Kumar and Peeta, 2010, 2014), and greedy path-based approach (Xie
et al., 2018).

Algorithm 2: Framework for path-based algorithms

Initialize the working path set for each OD pair;
while convergence criteria not met do

for each OD pair do
Find the shortest path from origin to destination. Add it to working path
set if not already included;
Shift flows within the working path set to get closer to equilibrium;
Calculate the updated link travel times and convergence criteria;
Drop zero flow paths from the set

end
end

Bush-based (or origin-based) algorithms were developed to efficiently store path
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information while improving computation time. They store network information in con-
nected and directed acyclic graphs rooted at each zone, reducing memory requirements and
allowing for easy decomposition into path flows. Algorithm B proposed by Dial (2006)
selects the shortest and longest paths within a bush to each destination node and shifts flow
using Newton’s method, iterating over all bushes till convergence. Origin based assignment
(Bar-Gera, 2002) tweaks the general structure of Algorithm B by allowing for flow shift
across many paths simultaneously, as opposed to just the shortest and longest path. Nie
(2012) demonstrated improvements to OBA by a different Hessian estimation. Linear user
cost equilibrium (Gentile, 2014) is extremely similar to OBA, but adds a linearization and
localization step when scanning nodes, trying to solve a local user equilibrium problem.

Algorithm 3: Framework for bush-based algorithms
Initialize the bushset with an initial bush for every zone (potentially the shortest
path tree);

while convergence criteria not met do
Shift flows within the each bush to bring each origin closer to equilibrium;
Modify the bushes by adding links that reduce travel times and removing
unused links;
Calculate the updated link travel times and convergence criteria;

end

The last algorithm to be discussed is titled ”Traffic assignment by paired alternative
segments” or TAPAS (Bar-Gera, 2010). It is a recent algorithm which both solves TAP and
provides a path flow solution satisfying proportionality, a slightly weaker condition than
entropy maximization. TAPAS differs from path-based and other bush-based algorithms
by storing path segments used by multiple origins and then re-using information about
PASs across iterations. PAS travel time equations also help concisely represent equilibrium
conditions. TAPAS was further improved by Xie and Xie (2014) and presented as i-TAPAS.
TAPAS, and related algorithms derived from it, are shown to be highly efficient (Xie andXie,
2015). Xie and Xie (2015) also present an in-depth comparison among these bush-based
algorithms (and a few others) and their computational performance.

2.2 S-TAP and A-TAP

Historically, Prager (1954) first mentioned the need to model traffic interactions on a two-
way street. Dafermos (1971) and Dafermos (1972) were the first to formulate S-TAP and
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A-TAP, showing equivalence with the multi-class TAP, and presenting an iterative flow
update algorithm to obtain user equilibrium and system optimal flows. Sender and Netter
(1970) used the fixed point theorem to show the existence of an equilibrium solution in the
asymmetrically formulated multi-class TAP. Smith (1979) was the first to formulate A-TAP
as aVI, presenting a set of conditions for existence (continuity of cost vectors) and uniqueness
(strictmonotonicity of cost vectors for all supply feasible vectors) of the equilibrium solution.
Dafermos (1980) showed that these uniqueness conditions were equivalent to the Jacobian
being positive definite, and proved the existence of an equilibrium solution. As checking
positive definiteness can be cumbersome to test in practice, Heydecker (1983) proposed
an easier test, based on diagonal dominance. This is a weaker condition than positive
definiteness, thus showing that positive definiteness of the Jacobian is a sufficient but not
necessary condition. Heydecker also discussed the existence of multiple (and unstable)
equilibrium solutions when said conditions are violated. The equivalent requirement of
positive definite Jacobian for the multi-class TAP solution existence was also shown by
Braess and Koch (1979).

The VI formulation allowed for a number of different solution approaches to be
proposed for A-TAP, including the non-linear Jacobi method (or diagonalization method),
projection methods, and column generation methods. Dafermos (1982) proposed a relax-
ation method and proved its convergence. Fisk and Nguyen (1982) analyzed this approach,
the projection method, and three other solution methods, concluding that the non-linear
Jacobi method was most efficient. Nagurney (1984, 1986) extended this comparison of the
relaxation and projection method for multi-modal problem with varying travel costs and
A-TAP, concluding that no one method was uniformly superior. Smith (1983) modeled
junction interactions using A-TAP, while proposing a new objective function measuring
deviation of traffic distribution from equilibrium. Smith also provided a descent direction to
monotonically reduce the new objective function and a path enumeration based algorithm
for A-TAP.

Florian and Spiess (1982) provided a sufficient condition for diagonalization algo-
rithm convergence. Nguyen and Dupuis (1984) proposed an iterative approach for A-TAP
post-optimizing a linear sub-problem at each iteration. Lawphongpanich and Hearn (1984)
used simplicial decomposition constructing the solution as a convex combination of all
extreme points of the flow vector space. They compared their approach to the Nguyen and
Dupuis (1984) approach on the networks proposed in Nguyen and Dupuis (1984) and Fisk
and Nguyen (1982), concluding that the simplicial approach is competitive with the iterative
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approach while storing a small number of extreme flow patterns. In the same vein, Gabriel
and Bernstein (1997) and Bernstein and Gabriel (1997) solved A-TAP with non-additive
route costs using column generation for nonlinear complementarity problem (NCP) gap
minimization, equivalent to the VI formulation. The NCP formulation is needed when
route-level interactions are modeled, such as non-additive route cost interactions. They also
showed the existence and uniqueness of the solution if the function is separable. Lo and
Chen (2000) also apply column generation to the reformulated NCP for route-specific tolls.

Mahmassani and Mouskos (1988) tested the diagonalization approach on three
networks including the Texas highway network, and observed convergence of the algorithm
despite violation of sufficient conditions presented inDafermos (1982). Similar observations
were made by Friesz et al. (1984) and Friesz (1985). Mahmassani and Mouskos also
compared their implementations with Sheffi’s streamlined implementation (Sheffi, 1985)
with one FW iteration per subproblem and concluded that there is no single best choice for
the number of FW iterations. Meneguzzer (1995) provided an overviewof the advances in the
field of diagonalization for A-TAP and convergence for explicit modeling of intersections.
Marcotte and Guélat (1988) applied the modified Newton method to A-TAP, comparing
its performance with cutting plane methods and diagonalization, observing their method
performing better than other methods for complex asymmetric interactions. Dupuis and
Darveau (1986) assessed the convergence conditions for A-TAP solutions using projection
and diagonalization methods.

Hearn et al. (1984) drew a connection between convex programming formulation of
A-TAP and the VI formulation. Marcotte and Wynter (2004) relaxed the monotonicity con-
dition for interactions, proposing weaker convergence conditions for A-TAP with multiple
modes. Wong et al. (2001) modeled A-TAP with simulation approach for the intersection
delay. Panicucci et al. (2007) formulated the VI in terms of path flows and propose a column
generation scheme based on Khobotov’s method. Yook and Heaslip (2016) discussed ways
to accelerate the convergence of double-projection method proposed by Panicucci et al.
using the decomposable path flow VI structure. De Grange and Muñoz (2009) presented
a method to equalize line integral paths for affine cost A-TAP. Chen et al. (2011) modeled
A-TAP interactions using side constraints. Sancho et al. (2015) evaluated the performance
of five projection methods for A-TAP and observe that a variation of Khobotov’s method
proposed by He et al. (2012) shows the fastest convergence. Patriksson (2015) and Yook
(2014) provide good overviews of alternative solution approaches for A-TAP.

As suggested by the above review, there was significant focus on A-TAP research
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in the 1980s and 1990s, but comparatively less since then. The broad explanation for this
is the emergence of DTA as a serious modeling tool (Peeta and Ziliaskopoulos, 2001; Chiu
et al., 2011), with better grounding in traffic science than link performance functions could
ever hope to have, whether separable or with interactions.

2.3 Convergence criteria and network metrics

Algorithms for traffic assignment converge to an equilibrium solution in the limit, so a
convergence criterion must be introduced to ensure output in finite time. Rose et al. (1988)
considered the convergence behavior of the Frank-Wolfe algorithm on small networks (16
nodes). Their study used the relative gap metric (a common convergence criterion, defined
below) based on the duality gap. They concluded that it was very difficult to obtain precise
estimates of the equilibrium flows in networks which contain only a few O-D pairs with
overlapping paths, and called for more research on convergence behavior. Boyce et al.
(2004) found that link flows in the Philadelphia network stabilized once the relative gap (a
different definition, also defined below) was below 10−4.

The primary guidance to date is based on Boyce et al. (2004), and a relative gap
level of 10−4 or 10−5 is common in current software as a default convergence criterion.
The manual for Caliper’s TransCAD software further suggests that “since traffic assignment
problems vary in many dimensions, some experimentation is warranted to arrive at how
much convergence is enough.” (Caliper Corporation, 2018). While the study by Boyce et al.
(2004) played a critical role in determining the necessary level of precision, its experiments
were conducted on a single network and considered a single metric (freeway link flows).

Aggregate measures, such as total system travel time or vehicle-miles traveled,
are used to capture the overall state of a network (Harrison et al., 2006; Weisbrod, 2008;
Higgins, 2013; Moudon and Stewart, 2013). For instance, the North Carolina Department of
Transportation strategic plan uses total system travel time to monitor network performance
(North Carolina Department of Transportation, 2015), Litman (2016) uses vehicle-miles
traveled as a sustainability indicator, Qian and Zhang (2012) use total system travel time
and vehicle miles travelled as factors to compare interstate closure scenarios in Sacramento,
and the California Department of Transportation uses a reduction in vehicle-miles traveled
as a strategic target (California Department of Transportation, 2015). A few other examples
include usage in analysis of delivery vehicle impact (Holguín-Veras et al., 2013), credit-
or permit-based demand management (Lessan and Fu, 2019) and within network design
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problems as project selection criteria (Shayanfar and Schonfeld, 2019; Gokalp et al., 2021;
Patil et al., 2022a). Disaggregate measures, such as link and path flows, more finely
describe the impacts of projects on specific regions and populations. Such measures are
commonly used by many practitioners and researchers (Bureau of Transportation Statistics,
2015; US Department of Transportation, 2016, 2017; Seattle Department of Transportation,
2016; Maryland Department of Transportation, 2018; Cherlow, 1981; Daniels et al., 1999;
Astroza et al., 2017; Boyles et al., 2018; Pandey and Patil, 2022).

2.4 Why are runtimes still an issue?

With advances in computing and solution algorithms, it is worth askingwhether run times are
still relevant in static assignment, particularly given the time frame of long-term planning.
As discussed in the previous section, there are applications requiring large number of
assignment runs, often with traffic assignment as a subproblem in an iterative scheme. For
this reason, research continues in assessing and improving the computational performance
of static assignment (Galligari and Sciandrone, 2019; Schneck and Nökel, 2020).

Furthermore, as computation power advances, network models have increased in
scope and resolution. Regional planning models today commonly include tens of thousands
of links and nodes, multiple user classes, and feedback to earlier modeling stages to ensure
consistency. For large metropolitan areas, even using cutting-edge software and hardware,
it is not uncommon for a single model run to take several hours. For a single scenario, this
may be acceptable; as part of a bilevel trip table optimization requiring thousands of runs it
is clearly not.
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Chapter 3

Symmetric and asymmetric traffic
assignment algorithm convergence

3.1 Introduction

Traffic assignment is a cornerstone of the urban planning and forecasting process, relating
travel demand to a forecasted network loading, providing metrics such as link flows and
travel times. Many traffic assignment models exist, as discussed in Chapter 2. Broadly
speaking, there is a tension between the level of “realism” of a model (used here to refer
to the level of detail in capturing traffic physics) and how “nice” the model is (in terms of
mathematical analysis, computational efficiency, provably correct algorithms, and properties
such as equilibrium existence, uniqueness, and stability). Dynamic link and node models
are much more descriptive of traffic flow than the volume-delay functions typical of static
assignment, a powerful argument in their favor. At the same time, dynamic equilibrium
need not exist (Boyles et al., 2020, Section 11.3.1), or several may exist (Nie, 2010); and
precisely the same features that make dynamic models more realistic may also make them
more sensitive to any errors in input data, complicating calibration and possibly introducing
more error than is saved by improving the traffic flow model (Boyles and Ruiz Juri, 2019).
These are not merely theoretical concerns — if dynamic equilibrium may not exist at all,
or if multiple equilibria exist, it is not at all clear how to use the results of such a model
for alternatives analysis; and if a model is highly sensitive to parameters which are hard to
estimate (such as a time-dependent OD matrix decades in the future) its practical utility is
heavily limited. More extended versions of these issues are discussed in Bar-Gera (2010),
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Boyles and Ruiz Juri (2019), and Patil et al. (2021); in short, some applications demand
the realism of a dynamic model, while in other applications the advantages of static models
outweigh their drawbacks, and careful researchers and practitioners select their tool based
on the problem at hand.

This ongoing conversation serves as background for our investigation. Some re-
searchers have attempted to find unifying frameworks for static and dynamic assignment;
see Bliemer et al. (2012) and Bliemer and Raadsen (2019) for examples. An alternative
approach is to improve the traffic model in static assignment. In the 1980s, there was an
active line of research in the static assignment problem with interactions among links, rather
than using separable link performance functions. (This background material is described at
greater length in Chapter 2.) While research in this area has continued to this day, much
of the community’s attention shifted to dynamic assignment in the 1990s, with the advent
of reasonable link and node models, such as the cell transmission model (Daganzo, 1994,
1995). In recent decades, our knowledge of good dynamic link and node models has ad-
vanced further still (Yperman, 2007; Tampère et al., 2011). Research has also advanced
considerably in how the separable TAP is solved, with the discovery of path- and bush-based
algorithms (Jayakrishnan et al., 1994; Bar-Gera, 2002; Dial, 2006; Bar-Gera, 2010; Xie and
Xie, 2014; Chen et al., 2020).

We believe there are several reasons to take a fresh look at the static traffic assignment
problem with symmetric link interactions, considering it at least as an alternative to static
assignment, if not dynamic. As is known, with monotone cost functions, S-TAP retains
most of the favorable properties of TAP, including formulating the equilibrium problem
as a convex program, and the resulting features of solution existence, uniqueness, and
algorithmic tractability. In this chapter, we accomplish the following:

1. As an example of how existing node models can be approximated by symmetric,
monotone link performance functions, we develop such a representation of the Jin-
Zhang merge model (Jin and Zhang, 2003). (Section 3.2)

2. We discuss solution algorithms for S-TAP, including classic convex combinations
methods, but focusing mainly on more recent algorithms based on shifting flow
between a pair of alternative segments. We show that the flow shift formula for
S-TAP takes a familiar and simple form, and therefore existing algorithms for TAP
can be easily adapted for S-TAP. (Section 3.3).

3. We implement these algorithms on standard test networks, and show that in most
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cases, S-TAP actually converges faster than the separable TAP. Therefore, S-TAP can
be considered as a serious alternative to TAP in planning practice. We also report
preliminary results showing good performance of gradient projection for asymmetric
link interactions, even though there is no convex objective function (and therefore no
guarantees of convergence).

Section 3.6 summarizes our findings, and provides specific suggestions for further investi-
gations on the utility of S-TAP.

3.2 A symmetric, monotone merge model

While much research has been done on theoretical properties of traffic assignment with
interactions, we are not aware of specific guidance on exactly how interactions should be
chosen to represent real-world scenarios. To further motivate our investigation, we will give
an illustration of how symmetric, monotone link performance functions can be chosen to
approximate a nodemodel used in dynamic traffic assignment. Themethod we describe here
is surely not the only way to do this, but a full study of how to develop such approximations
(and to assess their quality on full-sized, realistic networks) is beyond the scope of this study.
Our aim in this section is simply to demonstrate that S-TAP is a plausible model for certain
applications.

We take as our starting point a simple network loading model, a network of point
queues. In this model, the time required to travel each link is a fixed free-flow time (C0),
plus time spent waiting in a queue at the downstream end. Let &(g) denote the length of
the queue at time g; these queues are “point” queues in that they may grow arbitrarily long.
Each link also has a uniform saturation flow D, perhaps proportional to the number of lanes.
We will denote by G(g) the inflow rate at the link’s upstream end, and H(g) the outflow rate
at the link’s downstream end. If G and H are time-invariant, we must have G ≥ H, and the
queue length at a given point in time will be &(g) = g(G − H). The travel time experienced
for a vehicle entering the link at time C will be C0+g(G/H−1). If we assume that G is constant
over an interval of length ) (and zero otherwise), the average delay experienced by a vehicle
on the link will be C0 + )2 (G/H − 1). If we choose units so that ) = 2, the formula simplifies
to C0 + (G/H − 1), which we will adopt for the remainder of the section.

Consider now a merge node with two upstream links (indexed 1 and 2) and one
downstream link (indexed by 3). A “merge model” takes as input the demands from each
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upstream link and the available supply from the downstream link, and produces the flow
rates out of each upstream link into the downstream link. Several merge models have been
proposed in the literature. (Daganzo, 1995; Lebacque, 1996; Jin and Zhang, 2003)

We now show that the Jin-Zhang merge model (Jin and Zhang, 2003) leads to a
symmetric, monotone delay function, if the demands are interpreted as the inflows G.1
With this interpretation, the model takes the following form. If G1 + G2 ≤ D3, there are no
queues, and hence no delays: H1 = G1, H2 = G2, so C1 = C01 and C2 = C02. Otherwise, the
Jin-Zhang model allocates flows proportionally to demands: H1 = D3G1/(G1 +G2), and hence
C1 = C

0
1 + [(G1 + G2)/D3 − 1]. Likewise, C2 = C02 + [(G1 + G2)/D3 − 1]. In either case, the

Jacobian of t with respect to x is symmetric and positive semidefinite.
Alternative merge models, such as that of Daganzo (1995), do not directly lead

to symmetric and monotone performance functions. However, it may be possible to create
reasonable approximations to them that satisfy these conditions (indeed the Jin-Zhangmodel
may be seen as such an approximation), at least in a region of demand and supply values
the modeler believes to be likely at a particular junction. For instance, the Daganzo merge
violates symmetry only in the exceptional case when a queue forms on one upstream link,
not both. We believe it plausible that similar procedures or approximations can apply to
other types of interactions between links, based either on node models from dynamic traffic
assignment, formulas from the Highway Capacity Manual (2010) or similar literature, or
regression from simulation, but we leave such investigation to future study.

3.3 Algorithms and convergence

This section discusses solution algorithms for S-TAP with monotone cost functions. To do
so, it will be convenient to choose a specific integration path for the line integral in (1.11).
If we choose the path (0, 0, 0, . . . , 0) → (G1, 0, 0, . . . , 0) → (G1, G2, 0, . . . , 0) → · · · →
(G1, G2, . . . , G=) , the line integral decomposes into a sum of ordinary integrals:

� (x) =
=∑
8=1

∫ (G1,...,G0−1,G0 ,0,...,0)

(G1,...,G0−1,0,0,...,0)
C8 (G) 3G . (3.1)

1This is an approximation to the actual dynamic model, since if a queue forms, the demand will increase
to the saturation flow D. Indeed, one critique of the Jin-Zhang model is that it is unstable with respect to this
transition, a violation of the “invariance principle,” cf. Lebacque and Khoshyaran (2005).
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Each link performance function is increasing for each independent flow variable, so each
integral is convex, as is the sum.

With this representation, the gradient and Hessian of � take simple forms. Using
the Leibniz rule, the derivative of � with respect to any link flow G0 is

m�

mG0
= C0 (G1, . . . , G0, 0, . . . , 0) +

∑
8>0

∫ (G1,...,G8−1,G8 ,0,...,0)

(G1,...,G8−1,0,...,0)

mC8

mG0
(G) 3G .

But using the symmetry condition, mC8/mG0 = mC0/mG8 , and so we ultimately have m�/mG0 =
C0, from the fundamental theorem of calculus. That is, the gradient of � is simply the vector
of link travel times, as it is in TAP (and indeed, as it should be for the optimality conditions
to express equilibrium). The Hessian of � is then just the Jacobian of the link performance
functions, that is, (��)01 = mC0/mG1.

3.3.1 Convex combinations algorithms

Convex combinations algorithms operate on the link flow vector x, iteratively combining
a current feasible solution with a “target” solution x∗, with an update rule of the form
x ← (1 − _)x + _x∗. Typically x∗ is an “all-or-nothing” solution obtained by placing
all demand on shortest paths when the link costs are t(x). They are relatively naïve,
but amenable to parallelization, and they typically make excellent progress in their initial
iterations before the rate of convergence slows sharply (ultimately, to a sublinear rate).

The simplest possible convex combinations algorithm is the method of successive
averages, where the step sizes _ are chosen a priori in a divergent sequence (but with

∑
_2

finite); a common example is {1/2, 1/3, 1/4, . . .}. Convergence of this method for S-TAP
can be shown using the following result:

Proposition 3.3.1 (Powell and Sheffi, 1982) Consider a twice-continuously differentiable
convex function � (x), and a sequence {x0, x1, . . .}, where x0 ∈ - and xi = (1−_8)xi−1+_8x∗i
for 8 ≥ 1, with x∗i ∈ - , _8 ∈ [0, 1],

∑
_8 = ∞, but

∑
_2
8
< ∞. This sequence converges to a

minimizer x̄ of � if the following conditions hold:

1. The inner product (∇� (xi))) (x∗i − xi) is negative whenever � (xi) > � (x̄).

2. The values of (x∗i − xi))�� (xi + k_8 (x∗i − xi)) (x∗i − xi) are bounded over all 8 and
k ∈ [0, 1].
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Each condition can be checked easily. If x∗i is an all-or-nothing assignment to
shortest paths, then t(xi)) (x∗i − xi) ≤ 0, with equality only if xi is an equilibrium. Since
∇� (x) = t, and since equilibria correspond to minima of �, the first condition is satisfied.
Since - is compact, continuity of the link performance functions ensures that the elements
of �� and that the magnitudes of x∗i − x are bounded, and the second condition is satisfied
as well.

As a convex program, monotone S-TAP can also be solved by the Frank-Wolfe
algorithm, which selects each _8 ∈ [0, 1] to minimize the value of the objective. A proof of
convergence can be found in Section 2.2.2 of Bertsekas (2016).

3.3.2 Algorithms equilibrating paths

In many path- and bush-based algorithms, the fundamental operation involves equilibrating
two paths: given a lower-cost path c! and a higher-cost path c* connecting the same origin
and destination, shifting flow from c* to c! to either (approximately) equalize their costs,
or to shift all flow onto c! . Examples of such algorithms are the gradient projection method
of Jayakrishnan et al. (1994), Algorithm B (Dial, 2006), and TAPAS (Bar-Gera, 2010).2

Given these paths, the question is how much flow ΔG to shift from c* to c! . For
TAP, Newton’s method is commonly used to estimate the value of ΔG that equalizes the
path costs; this is also the value of ΔG minimizing the Beckmann function. The same
applies for S-TAP, although the scaling factor in the denominator must change to reflect link
interactions, as we now show.

Let x(ΔG) denote the link flows after ΔG has been shifted away from c* onto c! .
The only links whose flows will change are those in c! or c* , but not both; let �! and �*
respectively denote the links only in c! and c* . Then

G0 (ΔG) =


G0 + ΔG if 0 ∈ �!
G0 − ΔG if 0 ∈ �*
G0 otherwise

. (3.2)

2TAPAS actually performs such shifts for multiple origin-destination pairs simultaneously, with alternative
paths differing on the same segments of links; this point does not affect the discussion here.
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To find the value of ΔG minimizing the S-TAP objective �, we find where the derivative

3�

3ΔG
=

∑
0

m�

mG0

3G0

3ΔG
=

∑
0∈�!

C0 −
∑
0∈�*

C0 (3.3)

vanishes. As in the separable case, this is exactly when c! and c* have equal cost.
To apply Newton’s method, we also need the second derivative of � with respect to

ΔG, in order to scale the step size properly. We calculate

32�

3 (ΔG)2
=

∑
0

∑
0′

m2�

mG0mG0′

3G0

3ΔG

3G0′

3ΔG

=
∑
0∈�!

∑
0′∈�!

mC0

mG0′
+

∑
0∈�*

∑
0′∈�*

mC0

mG0′
−

∑
0∈�!

∑
0′∈�*

mC0

mG0′
−

∑
0∈�*

∑
0′∈�!

mC0

mG0′
. (3.4)

Using the symmetry condition, this simplifies to

32�

3 (ΔG)2
=

∑
0

∑
0′

m2�

mG0mG0′

3G0

3ΔG

3G0′

3ΔG

=
∑
0∈�!

∑
0′∈�!

mC0

mG0′
+

∑
0∈�*

∑
0′∈�*

mC0

mG0′
− 2

∑
0∈�!

∑
0′∈�*

mC0

mG0′
. (3.5)

If there are no interactions at all, this formula reduces to
∑
0∈�!∪�* C

′
0, as it must.

So, the Newton estimate for the flow shift equalizing path costs is the quotient of
equations (3.3) and (3.5). The denominator is strictly positive, because �� is positive
definite by monotonicity, and this ratio is well-defined. To preserve feasibility, the flow shift
is truncated if any flow would become negative. This corresponds to the case when the
longer path becomes unused after the shift.

This operation can be substituted for the flow shift step in gradient projection,
Algorithm B, or TAPAS.

3.4 Numerical results

This section describes tests of the algorithms described in the previous section. The key
questions concern the computation time needed when link interactions are considered,
compared to the separable case. We focus on this issue since computational efficiency is
one of the advantages static models have over dynamic ones, and if S-TAP is to be useful in
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practice it should maintain this advantage. This section also considers asymmetric instances
as well, using these algorithms as a heuristic.

We measure convergence using the relative gap, defined as the ratio between the
total system travel time, and the total travel time of an all-or-nothing assignment to shortest
paths (keeping the current link costs). Using ^AB to reflect the shortest path cost between
nodes A and B, the relative gap is calculated as

'� =

∑
0 C0G0 −

∑
(A ,B) ∈/2 3AB^AB∑

(A ,B) ∈/2 3AB^AB
. (3.6)

Additional details on the relative gap, its relationship with other gap measures, and with
measures of effectiveness such as link flows and aggregate travel times, are discussed in
Patil et al. (2021).

3.4.1 Motivation - Toy example

Consider the example network shown in Figure 3.1. We will use this network with different
cost functions to show the effects of symmetric vs. asymmetric interactions, and the impact
of how many other links affect the travel time of a given link. Consider the five cases (and
the corresponding link costs) shown in Table 3.1.

Figure 3.1: Toy network
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The convergence results for the first few iterations of gradient projection are given
in Table 3.2. More iterations for this toy example are omitted for brevity. The symmetric-
full interaction scenario achieves a lower relative gap for the same number of iterations,
followed by asymmetric-full interaction, symmetric-partial interaction, asymmetric-partial
interaction, and lastly, separable scenario.

This is due to two effects. First, a higher level of interaction leads to faster conver-
gence. We speculate that this occurs because each path flow equilibration affects more links
in the network than just those in �! and �* , and therefore moves more of the network to-
wards equilibrium at each step. Compare the symmetric-full and asymmetric-full scenarios
to the symmetric-partial and asymmetric-partial scenarios in Table 3.2. The full-interaction
cases perform better than partial interaction scenarios, which still perform better than the
separable TAP scenario.

Second, symmetric scenarios tend to achieve (somewhat) faster convergence com-
pared to asymmetric scenarios. This is attributed to the path equilibration step having
accurate information about the rest of the network (by symmetric Jacobian effects) as op-
posed to approximate information in the asymmetric case. Consider the symmetric-partial
and asymmetric-partial cases, with very minor link cost differences on links 2 and 3. The
symmetric-partial relative gap is almost half of the asymmetric-partial gap by iteration 5, a
trend that continues in additional iterations not shown in the detail.

These two effects can be quantified using the eigenvalues of the Hessian of the cost
matrix. For our problem, this is represented by the weight matrix for linear cost functions,
and approximated by it otherwise. For steepest descent methods, the condition number (ratio
of the largest eigenvalue to the smallest eigenvalue) correlates to the rate of convergence
(Bertsekas, 2016). A large condition number means the problem is ill-conditioned, i.e.,
the optimization variables are not relatively scaled well, and convergence will be slow. A
small condition number (closer to 1) will have faster convergence behavior. For example,
the condition numbers for the symmetric and asymmetric toy examples with full interaction
in Table 3.1 are 3 and 3.154, respectively.

In our investigations, we observe that problem instances with differing condition
numbers follow this behavior, and the cost matrix can be useful for predicting convergence
behavior w.r.t. similar problem instances. For instance, see Figure 3.2. We generated
problem instanceswith slightly different weightmatrices (and therefore, condition numbers),
and then allowed GP to solve the instances for 20 iterations. We can see that the instances
with lower condition numbers generally show better convergence than instances with higher
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Figure 3.2: Condition number behavior of Sioux Falls problem instances

condition numbers.
The next subsection details our experiment design on significantly larger real-world

networks to corroborate these observations, and our intuition about convergence for the
symmetric/asymmetric and no interaction/full interaction cases.

3.4.2 Data and Experiment design

We test the method of successive averages (MSA), Frank-Wolfe (FW), and gradient projec-
tion (GP) on five standard networks, chosen for their varying size and congestion levels. The
networks are obtained from the transportation problems test repository (Stabler, 2019). Our
implementations of MSA, FW, and GP for S-TAP and A-TAP, as well as the testing frame-
work, can be found on the first author’s Github repository (Patil, 2021). Table 3.3 contains
the network size details and average link volume over capacity as a proxy for congestion.
These experiments used a relative gap of 10−6 as a convergence criterion.

We used the following procedure to generate cost functions with interactions that
attempt to preserve the level of congestion in the original networks. The link performance
functions in the original network are separable. In our experiments, we replace each G0 with
a linear combination of the form

∑
0′∈�F00′G0′, with

∑
0′ F00′ = 1 and each F00′ ≥ 0. If

the weight matrix W is symmetric, then the interactions are approximately symmetric (but
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Table 3.3: Description of networks used

Network name Zones Links Nodes Trips

SiouxFalls 24 76 24 360,600
Eastern-Massachusetts 74 258 74 65,576
Chicago-sketch 387 2950 933 1,260,907
Barcelona 110 2522 1020 184,679
Chicago-Regional 1790 39018 12982 1,360,427

not entirely so, since the link performance functions are nonlinear). The separable case is
represented with W = I. We generate the weight matrices so that each link depends on a
given number of other links (the number of “degrees of dependency,” denoted #), and with
W diagonally dominant to avoid cases with multiple equilibria.

The first set of experiments tested the convergence behavior of the three algorithms
for TAP, S-TAP, and A-TAP on all networks. The best performing algorithm was then
chosen for further convergence testing of S-TAP and A-TAP. The second set of experiments
studied the effect of topographical link interactions. These experiments aim to understand
impact the degree of dependency has on the convergence rate. The third set of experiments
analyzed the effects of symmetry. We consider a smooth transition from asymmetry to
symmetry to starting with an asymmetric matrix W, and taking weighted averages with
the associated symmetric matrix 1

2 (W +W) ). Specifically, these experiments consider the
Jacobian matrices _W + (1 − _) 1

2 (W +W) ) for _ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.

3.4.3 Results

Figures 3.3 and 3.4 present the compiled results for Sioux Falls. The first observation from
Figure 3.3(a) is the behavior of MSA and FW algorithms is extremely similar for TAP,
S-TAP, and A-TAP, while GP outperforms them. The relative gap and number of iterations
are linearly related on a logarithmic axis, consistent with prior literature (Xie et al., 2018).
Based on these initial results, we use GP as the testing algorithm for further experiments.

An important observation here is the independence from implementation details
and absolute computation time. Our experiments have been conducted on a basic GP
implementation. Therefore, any performance gains achieved by parallelization or other
implementation techniques are applicable to these results, helping speed up convergence.
For instance, Chen et al. (2020) implement a parallel block coordinate descent algorithm
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based on GP algorithm, and the absolute computation time gains would be applicable to our
observations for S-TAP and A-TAP. Therefore, we do not emphasize absolute computation
times, but focus on comparative behavior.

Figures 3.3(b) and 3.3(c) show the behavior of link cost dependency on link flows
within # degrees of any given link for S-TAP and A-TAP, respectively. A higher degree
of dependence leads to earlier convergence, as was observed in the motivating toy network.
This is attributed to each flow equilibration step having more implicit information about the
network state. Also, S-TAP is seen to converge marginally faster than A-TAP, as expected.
The only exception is the case # = 2 case, though it still does not outperform # = 5 or
# = 6 link interaction instances. Along similar lines, Figure 3.4 shows convergence behavior
when the weight matrix proceeds from an asymmetric instance (_ = 1) to the corresponding
symmetric instance (_ = 0). The results indicate as the matrix tends toward the symmetric
version, more accurate information (about the remaining network) is available during each
flow equilibration, leading to marginally faster convergence.

Figures 3.5–3.8 show the results for EasternMassachusetts, ChicagoSketch, Barcelona,
and Chicago Regional networks, respectively. The main observations from the Sioux Falls
networks are seen to hold for these larger networks. Themaximum # for these four networks
is 8, 31, 30, and 112, respectively. These networks show no exception to these trends, unlike
the Sioux Falls network. Also, the test instances with lower # values achieved better relative
gap levels for larger networks; the highest # instances all reached a gap below 10−12.
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(a) Asymmetric to symmetric weight matrix convergence

(b) Convergence for S-TAP GP with #-link cost dependency

(c) Convergence for A-TAP GP with #-link cost dependency

Figure 3.3: Experimental results for Sioux Falls network
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Figure 3.4: Sioux Falls asymmetric to symmetric weight matrix convergence
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(a) Convergence for S-TAP GP with #-link cost dependency

(b) Convergence for A-TAP GP with #-link cost dependency

(c) Asymmetric to symmetric weight matrix convergence

Figure 3.5: Experimental results for Eastern Massachusetts network
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(a) Convergence for S-TAP GP with #-link cost dependency

(b) Convergence for A-TAP GP with #-link cost dependency

(c) Asymmetric to symmetric weight matrix convergence

Figure 3.6: Experimental results for Chicago-sketch network
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(a) Convergence for S-TAP GP with #-link cost dependency

(b) Convergence for A-TAP GP with #-link cost dependency

(c) Asymmetric to symmetric weight matrix convergence

Figure 3.7: Experimental results for Barcelona network
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(a) Convergence for S-TAP GP with #-link cost dependency

(b) Convergence for A-TAP GP with #-link cost dependency

(c) Asymmetric to symmetric weight matrix convergence

Figure 3.8: Experimental results for Chicago-regional network
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Table 3.4: Description of networks used

Network name Zones Links Nodes Trips Average flow-to-capacity ratio

SiouxFalls 24 76 24 360,600 1.612
Eastern-Massachusetts 74 258 74 65,576 0.163
Anaheim 38 914 416 104,694 0.297
Chicago-sketch 387 2950 933 1,260,907 0.257
Berlin-Prenzlauerberg-Center 98 2184 975 23,648 0.121
Barcelona 110 2522 1020 184,679 1.137
Winnipeg 147 2836 1052 64,784 2.028
Terrassa 55 3264 1609 25,225,700 5.964
Austin 7388 18961 7388 739,351 0.875
Berlin-Center 865 28376 12981 168,222 0.092
Chicago-Regional 1790 39018 12982 1,360,427 0.522
Philadelphia 1525 40003 13389 18,503,872 0.949

3.5 Convergence experiments

This subsection focuses on the convergence behavior for S-TAP. As stated above, we pri-
marily consider GP with two-link interactions. This limits our experiments to the most
common use case, i.e., two-way roads. The networks studied in this chapter are shown in
Table 3.4, all obtained from the Transportation Networks for Research repository (Stabler,
2019). For ease of reference, we categorize the networks roughly by size: Sioux Falls
through Anaheim are designated as small, Chicago Sketch through Terrassa are designated
as medium, and the remaining networks are designated as large. The last column in this
table shows the average equilibrium flow-to-capacity ratios, excluding centroid connectors.
We consider networks with ratios of less than 0.5 to be uncongested, with ratios between
0.5 and 1.0 to be semi-congested, and networks with ratios greater than 1.0 to be congested.
The Terrassa network is a clear outlier in this regard, assigning over 25 million trips in a
region whose current population is around 200,000, resulting in a flow-to-capacity ratio of
almost 6. While such a demand level may not be realistic, we nevertheless include this
network as a “stress test” to see whether consistent trends can be seen even in extremely
congested networks. Lastly, we also conduct these experiments using Algorithm B (AlgB),
a bush-based algorithm which is often faster in practice.
Given a feasible solution (x, h) to TAP, we select three metrics for analysis. The total system
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travel time (TSTT) expresses the sum of each vehicle’s travel time in the network:

)()) (x) =
∑
(8, 9) ∈�

C8 9G8 9 (3.7)

Vehicle-miles traveled (VMT) expresses the total distance traveled by vehicles in the
network:

+") (x) =
∑
(8, 9) ∈�

;8 9G8 9 (3.8)

To measure convergence of these metrics, we calculate the relative difference be-
tween their values at the current solution x and the equilibrium solution x∗:

Δ)()) (x) = )()) (x) − )()) (x
∗)

)()) (x∗) (3.9)

Δ+") (x) = +") (x) −+") (x
∗)

+") (x∗) . (3.10)

Both TSTT andVMTare aggregatemetrics. To represent convergence of the specific
link and path flows themselves, we measure the proportion of links within a given relative
threshold n of their equilibrium values. Let �∗n (x) denote the set of links with flows within
this threshold:

�∗n (x) =
{
(8, 9) ∈ � :

���G8 9 − G∗8 9 ��� < nG∗8 9} . (3.11)

Using these sets, we define the proportion of unconverged links (PUL) as

%*! (x, n) = 1 − |�
∗
n (x) |
|�| , (3.12)

These metrics — Δ)()) , Δ+") , %*!— are directly related and used in practical
applications and planning, and converge to zero at the equilibrium solution. Additional
detail about these metrics can be found in Chapter 6. We track these metrics against relative
gap (defined in Section 3.4), a convergence metric.

The full set of results can be found in the Appendix (Tables A.1-A.3). The values
of the three main metrics for GP experiments are shown in Figures 3.9–3.11 (presented
according to each metric). The thin lines represent the values of each metric in one of the
twelve networks tested, and the thick line represents the average value. Both sets of figures
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Figure 3.9: ΔTSTT trends for different gap levels

use logarithmic axes for the relative gap. All metrics converged at roughly similar rates,
despite significant differences in the size and congestion level of the networks tested.

In all the networks, the aggregate metrics ()()) and +")) are already very near
stabilization at a relative gap of 10−3. For the small and medium networks, these values are
within 1% of the equilibrium values when the relative gap is 10−4, and for the large networks
they are within 2%. Both Δ)()) and Δ+") converge at roughly similar rates, but Δ+")
is usually slightly lower at a particular gap level. This behavior is in line with the metric
behavior for TAP, as noted in Patil et al. (2021) and section 6.4 of this study.

The proportion of unconverged links was the metric originally studied by Boyce
et al. (2004) for the Philadelphia regional network. They found that a gap of 10−4 was
required to approach convergence for freeway links, defining convergence as a %*! of 1%
or less. To achieve this level of convergence for arterial links as well as freeway links, a
relative gap of 10−5 was needed. Our results show that this latter conclusion generally holds
across the other networks tested, and that 99% of link flows are accurate to within 1% of
equilibrium values at this gap level.

Next, we compare the GP convergence behavior to AlgB convergence behavior. The
full data from these results are shown in Tables A.2 (raw data for Algorithm B) and A.3 (for
a side-by-side comparison) in the Appendix. The trends are very similar between the two
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Figure 3.10: ΔVMT trends for different gap levels

Figure 3.11: PUL trends for different gap levels
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algorithms, and the values of each metric are always of the same order of magnitude, and
almost always nearly identical numerically. This finding is encouraging, suggesting that the
conclusions of the GP experiments are applicable to other algorithms, and that the relative
gap is a good universal measure of convergence, regardless of the specific assignment
algorithm. Again, these results are in line with prior results from Patil et al. (2021) as well
as TAP results in section 6.4.

3.6 Conclusions

This chapter reconsiders the traffic assignment problems with interactions. We showed that
merge models from dynamic traffic assignment can be approximated with symmetric, mono-
tone cost functions; examined alternative algorithms, deriving the Newton shift formula with
interactions; and considered the practical convergence rate of gradient projection and Algo-
rithm B with such functions. We found that instances with interactions actually converge
faster than separable instances of traffic assignment. All of this suggests that problems
currently studied with static traffic assignment may benefit from considering interactions
— there seems to be little computational difficulty (in fact, convergence was almost always
faster), and the valuable properties of equilibrium existence and uniqueness are retained. Of
course, there remain other problems where dynamic assignment is preferred.

Further research would be valuable along several lines. Further investigation of ap-
propriate cost functions is needed, to derive them from other node models, and to consider
the impacts of these approximations on network-wide flow. Additional research into algo-
rithms for the non-monotone or non-symmetric cases is also needed; we show that gradient
projection still functions as an acceptable heuristic, but comparisons with other algorithms
from the variational inequality literature are needed.
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Chapter 4

Rail network electrification problem

4.1 Introduction

Rail networks play a vital role in local and national economic structures. In many countries
such as Japan and Switzerland, they constitute a significant share of passenger transport
mode share (MLITMinistry of Land, Infrastructure, Transport and Tourism, 2018; Statistics
Bureau, Ministry of Internal Affairs and Communications, 2018; Federal Statistical Office -
Section Mobility, 2019). Rail freight transit also accounts for a large portion of total freight
transit, exceeding 50%modal share in large economies like Canada andRussia (Organisation
for Economic Co-operation and Development, 2013; Business Standard, 2019; Eurostat,
2020). Therefore, a significant opportunity exists for government policies incentivizing rail
network improvements to provide for larger economic, environmental and social returns.
Vehicular electrification is comparatively well studied, and electric vehicle markets are not
no longer considered emerging technology in many economies (Patil et al., 2022b). In
contrast, rail electrification in the US is still in its infancy.

Rail network electrification, and the accompanying transition from diesel-electric to
fully electric locomotives, are important steps towards sustainable systems and renewable
fuel sources. There are many studies on the impact and cost-benefit analysis of rail electrifi-
cation (United States Department of Transportation - Federal RailroadAdministration, 2015;
U.S. Department of Transportation - Federal Railroad Administration, 2019). Advantages of
electric locomotion include lower long-term energy and locomotivemaintenance costs, lower
noise and air pollution levels, faster acceleration, and more flexibility in the primary power
source, leading to less volatility from fuel price fluctuations. These benefits must be bal-
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anced with significant upfront investment for infrastructure upgrades, higher infrastructure
maintenance costs, vulnerability of overhead architecture, higher property tax obligations
for private rail companies, and the general uncertainty in the investment (Walthall, 2019).

We consider a rail network design problem (RNDP) where parts of a freight rail
network can be electrified, subject primarily to budget constraints. For readers unfamiliar
with the bi-level optimization problem known as a network design problem (NDP), the
literature review provides background reading. The RNDP we formulate aims to find the
optimal subset of rail links for infrastructure upgrade with a given objective. In this chapter,
the formulation uses the objective of minimizing private costs, laying a foundation that can
be adapted to improve net social benefit and reflect where subsidies ought to be directed.
Given that there are many rail operators, and that shippers can choose which operator to
use (not necessarily aligning with net social benefit), we model the lower level problem as
a user-equilibrium traffic assignment problem (TAP). Genetic algorithms (GAs) solve the
higher level problem of finding the optimal links to electrify.

In this setting, rather than apportioning an electrification budget to each rail operator
independently, a utilitarian schema allocates the electrification budget for specific link
electrification in order to bring about the greatest possible cost reductions across the network.
The rail operators and shippers then respond to these changes by altering their scheduling and
flow patterns to minimize their individual costs. Given multiple operators, the lower level
problem is a setting where flow is directed “selfishly,” to minimize shipment costs. For the
lower level problem, we assume that these activities lead to an equilibrium, where the costs
of shipment flows cannot be lowered unilaterally. With shipment flow expressed in tons, as
a continuous quantity over the long term, this problem satisfies the traffic assignment user
equilibrium assumptions. This assumption is consistent with prior literature on the topic
(Uddin and Huynh, 2015; Wang et al., 2018a). An alternative approach would be to model a
smaller number of self-optimizing fleet owners, resulting in a Nash-Cournout equilibrium.
However, VanVuren andWatling (1991) show that the difference in the resulting assignments
is less than 5% for aggregate measures in large networks, with this difference decreasing to
zero as the number of owners increases (indeed, the user equilibrium is the limiting case of
infinitely many owners.) Nash-Cournout equilibria are harder to compute, and require more
data to calibrate; given the relatively small observed differences in the aggregate metrics of
interest in this study, we opt to study only user equilibria.
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4.1.1 Rail electrification and policy planning

The oil crisis of the 1970’s spurred research into the economics of rail electrification.
In 1977, Schwarm (1977) examined the detailed costs associated with rail electrification
infrastructure. Schwarm found three primary categories: power delivery, public works
compatibility, and signaling systems compatibility. The power delivery category itself can be
divided into the contact systems and the traction substations, the latter helping to determine
each link’s electrified capacity. Nearly ten years later, Kneschke (1986) detailed the design
requirements of the traction substations, which affect the electrified lines’ capacities. In
the midst of these studies looking at the costs of electrification, and the trade-offs with
regard to capacity, other researchers began looking at electrification’s benefits. Whitford
(1981) examined the energy savings from electrifying the high-density portions of the rail
network, and Ditmeyer et al. (1985) would incorporate ancillary benefits and costs, such as
those accruing to maintenance, reliability, and fuel handling. At the time, emissions were
not a major concern. Additionally, computational costs and the relative youth of network
optimization techniquesmeant that these analyses primarily used traffic density as a heuristic
for link selection.

As computational resources and optimization algorithms progressed, the oil crisis
abated and deregulation led to a decrease in rail network mileage. Interest in freight rail
electrification only returned relatively recently. In 2012, Cambridge Systematics (2012)
conducted an extensive study on electrification for the Southern California Association of
Governments. RailTEC (2016) conducted a similar study for the California Air Resource
Board in 2016. Both studies were primarily motivated by reducing rail emissions, particu-
larly in dense urban areas. The latter study highlighted the problem of network connectivity:
because rail freight routes are particularly long, and the costs of switching from electric to
diesel-electric locomotives en route are high (in terms of delay and logistical costs of en-
suring locomotives are available), confining electrification to relatively small regions is
not an efficient way to limit emissions. Outside of regulatory constraints or internalized
emissions costs, rail companies would likely send large numbers of diesel-electric trains
through electrified portions of the rail network in order to limit overall route costs. We thus
face an optimization problem impacted by policy: how should the initial links be selected
for electrification, given budget constraints and a desire to reduce emissions from the rail
network?

There are very few studies to draw on for link improvement under a budget constraint,
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such as Mishra et al. (2016), which applied numerical methods towards “[making] optimal
investment decisions... in moderate and large transportation networks.” Mishra utilized
travel costs to road users, primarily consisting of temporal costs. Applying a similar
framework to a rail network considers similar costs, although fuel costs for rail constitute a
relatively larger portion, and time costs a relatively smaller one.

4.1.2 Rail electrification of other national networks

While the European rail network is extensively electrified, most of it is used for passenger
transport and comparisons to theUSnetwork are difficult. This can be attributed to deliberate
prioritization of passenger rail efficiency over freight, as evidenced by limits on maximum
permissibly train lengths, maximum axle loads, and vertical car height (Walthall, 2019).
Similarly, the Japanese rail network is used primarily for passengers, accounting for less
than 1% of total freight load.

India andChina both offer examples of extensive electrification of freight rail systems
relevant to the US network. China has extensively electrified both its passenger and freight
networks in the past decades, with over 70% total electrification and about 25%of its network
electrified between 1990 and 2007 (Lawrence et al., 2019). Much of this electrification
has coincided with major construction to upgrade capacity and signaling infrastructure,
especially in mountainous areas.

Similarly, India has extensively electrified its network (about 70%), prioritizing
selected main lines and high density routes (Ministry of Railways (India), 2020). India has
constructed high overhead contact systems in order to accommodate double-stacked freight.
Similar construction would be required in the US, where double-stacked container freight is
a large component of American railroads’ revenues.

4.1.3 Contributions and overview

NDPs are widely studied in road networks. Rail NDPs vary in two significant ways.
First, most of the freight rail network is privately owned by the user or contracted out
for usage, which leads to non-socially-optimal usage restrictions. Rail electrification has
highly uncertain, and possibly negative, rates of return when external benefits are not
accounted for. This chapter provides a framework for future analysis of policy interventions
to internalize the benefits to the private companies that own the rails andwould be responsible
for implementing electrification. Second, the characteristics of individual network links
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(track curvature and gradient) affect maintenance and operating costs more so than in road
networks.
With these distinctions in mind, the main contributions of this chapter are as follows:

• We formulate the rail electrification NDP as a bi-level optimization problem incorpo-
rating electrification costs; fuel, locomotive, and operational costs; and train resistance
(bearing, flange, air, grade, curve, braking, and inertia) costs.

• We present a heuristic for solving our formulation, using a general-purpose meta-
heuristic (a genetic algorithm) based on problem-specific insights.

• We solve this problem on a large-scale network representing the North American rail
system, and analyze the resulting solutions to draw insights and policy conclusions.

The rest of this chapter is organized as follows. We first describe the formulation for
the rail electrification NDP and associated model components. We then provide background
information and reading on NDPs and solution methods. We then describe the North
American rail network dataset and demand data we use, and outline our experiment design.
We follow this with a summary of the results from our experiments and draw practical
insights. We conclude by summarizing our findings and suggest avenues for future work.

4.2 Model Formulation and literature review

Let A denote the set of rail links traversable by diesel-electric trains. Each link 8 ∈ A
currently has a flow-dependent usage cost 28 (G8) per unit flow. The link can be electrified
for a cost of 24

8
, changing the usage cost function to 2′

8
(G8) per unit flow. The usage costs

for diesel and electrified links differ due to technological differences and fuel costs, and are
lower for electrified links. The set of candidate links eligible for electrification is denoted
by AE, a subset of A. The flow on link 8 is given by G8 tons per day. The capacity of the
link is denoted by D8 . Let Π denote the set of paths in the network, and ℎc the flow on a
particular path c ∈ Π.

The set of nodes (denoting stations, yards, interchanges, etc.) is denoted by N.
The demand between each origin A and destination B node is given by 3AB. The demand
information between all origin-destination (OD) pairs is stored in the OD matrix D. The
total budget for upgrades is �. The decision variable H8 for 8 ∈ A equals 1 if link 8 is chosen
for upgrades (electrification) and 0 otherwise. The cost for switching the mode of operations
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from diesel to electric (and vice versa) at yard 8 is F8 (and infinitely high at other nodes
without switching facilities).

The practical interpretation of link electrification involves additional infrastructure
allowing electric trains to use a linkwith different fuel costswhilemaintaining same total link
capacity. Therefore, a network transformation is needed to capture the separate diesel and
electric flows of goods with interacting congestion costs and separate track resistance costs.
Figure 4.1 shows this network transformation for each node in the network, incorporating
switching costs F8 . The link cost (specified in the Cost Formulae sub-section) has two
separable components, a congestion cost and track resistance. The link costs 28 are broken
down into congestion costs 2′

8
dependent on the total diesel plus electric flow, and track

resistance costs dependent only on mode-specific flow.

Figure 4.1: Network transformation

The RNDP is then formulated as follows:
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min
∑
8∈A

28 (G8)G8 (1 − H8) + 2′8 (G8)G8H8 (4.1)

subject to:∑
8∈A

248 H8 ≤ � (4.2)

H8 ∈ {0, 1} ∀8 ∈ A (4.3)

where H8 are found from the upper level problem and G8 values are found by solving the
following lower level assignment problem, in which " is a sufficiently large constant:

min
x,h

∮ x

0
c(s) · 3s (4.4)

subject to:

G8 =
∑

c∈Π:(A ,B) ∈c
ℎc ∀(A, B) ∈ A (4.5)

G8 ≤ "H8 ∀8 ∈ AE (4.6)∑
c∈ΠAB

ℎc = 3AB ∀(A, B) ∈ N2 (4.7)

ℎc ≥ 0 ∀c ∈ Π (4.8)

Equation 4.1 minimizes the total usage cost over electrified and non-electrified links.
Equation 4.2 enforces the electrification budget constraint. Equation 4.3 indicates that H8 is
a binary indicator variable. Equation 4.4 is the modified Beckmann function for symmetric
link interactions, described more in the next sub-section. Equation 4.5 states that the relation
between link and path flows, and Equation 4.6 ensures that the electrified links with flow
are the ones actually chosen for construction. Equation 4.7 ensures that the demand is met
across all used paths for each OD pair, and Equation 4.8 states flow non-negativity.

This lower level assignment problem is a generalized version of the static traffic
assignment problem (TAP) formulated as a convex program by Beckmann et al. (1956).
The rail traffic assignment can be expressed as static symmetric TAP if the flows refer to
the tonnage of goods (Alliance Transportation Group, 2013; Uddin and Huynh, 2015; Wang
et al., 2018a). We therefore assume the units of flow to be tons, allowing us to use existing
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solution methods to solve the lower level problem. With this formulation, this assignment
problem follows Wardrop’s first principle (Wardrop and Whitehead, 1952): “All used paths
between each origin and destination must have equal and minimal cost.”

The solution to static symmetric TAP is unique if the link performance functions
are strictly monotone and the cost Jacobian is positive semidefinite. These conditions are
satisfied by the cost functions we describe in the Cost Formulae section. This study uses an
implementation of Algorithm B (Dial, 2006) to solve this assignment problem. The validity
of the algorithm and flow shift formula for symmetric TAP is proved in the next section.
The source code is available at the SPARTA lab github repository (Boyles, 2019) under the
pd-word branch.

This formulation is presented with fixed demand. If elastic demand functions are
known, the fixed-demand assumption can be relaxed by applying the Gartner network
transformation (Gartner, 1980; Boyles et al., 2020). This transformation allows for the
elastic-demand equilibrium problem to be solved as a fixed-demand problem, introducing
new artificial links with specially-designed cost functions based on the demand functions.
Since the elastic demand case can be handled by the same solution methods as the fixed
demand case, for simplicity of exposition we do not discuss it further in our presentation of
the formulation and solution methods.

It is also straightforward to calculate costs for multiple years, accounting for fore-
casted future changes by solving a lower-level traffic assignment problem for each future
year and computing a total discounted cost. This approach would significantly increase
computational requirements, however, and we do not pursue it in the experiments we report.

4.2.1 Network design problem background

Network design problems (likemany other bi-level problems) are intractable to solve exactly.
Such methods (such as branch-and-bound or Benders decomposition) have been proposed,
as in Leblanc (1975), Chen and Alfa (1991), Drezner and Wesolowsky (1997), and Long
et al. (2010). However, the largest network tested in any of these studies has 40 nodes and
99 links.

Heuristic methods are standard for this class of problems. Genetic algorithms,
simulated annealing, and tabu search are examples of such methods that have been applied
to traffic NDPs. For details on such methods, see the review papers by Farahani et al.
(2013) and Iliopoulou et al. (2019). They study the urban transportation NDPs and provide
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an overview of the types of problem variations as well as solution methods and some
applications. In our experiments, we use a genetic algorithm for a solution heuristic.

Alternatively, the discrete NDP can be transformed into a single level problem. Gao
et al. (2005) transformed the problem into a nonlinear single level program utilizing support
functions, which was solved by existing techniques. A third approach involves formulating
the problem with equilibrium constraints, then using branch and bound or reduced gradient
based methods (Lo and Szeto, 2004, 2009; Szeto and Lo, 2006, 2008; Szeto et al., 2010).
Other methods, such as Lagrangian relaxation and column generation, have also been used
as exact solution methods for small NDP instances (Meng et al., 2001; Borndörfer et al.,
2008). As this approach is not viable for large instances, we focus on the non-exact methods,
which trade off guaranteed optimality for tractability.

In our experiments, we use a genetic algorithm as a solution heuristic. Katoch et al.
(2021) provide a recent review of GAs with applications in transportation network design
problems (road, transit, and multimodal network design), facility layout, inventory and
scheduling, and other domains. Key advantages of genetic algorithms for our application
are easy parallelization, only requiring objective function values (and not gradients or
Hessians), and the ability to quickly obtain quality solutions in practice. These advantages
help us exploit the sub-problem independence for parallelization. Additionally, this avoids
first- and second-order information calculation for the line integral objective function. Other
heuristics exploiting these properties can work well for this problem structure and can be
used instead of GAs.

4.3 Cost Formulae

This section provides the cost calculation formulae for the link electrification costs, track
resistance, and generalized link costs. Owing to a significant number of constants and rates
within these formulae, they are omitted here for brevity, but can be found on the author’s
github repository (Patil, 2020). In order to update cost values for inflation, this study uses
industry appropriate producer price indices from the U.S. Bureau of Labor Statistics (2020).

There are two main costs to be considered, roughly corresponding to the capital
expenses and operational expenses. Electrification costs (or capital expenses) refer to all
the costs associated with converting a link from standard operations to electric operations
that we considered. The generalized link costs (operational expenses) refer to the costs of
traversing a link, and incorporate both time and fuel (whether diesel or electricity) costs
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based on the link’s speed and resistance, calculated on a per-ton basis.

4.3.1 Link Electrification Cost

The link electrification cost does not depend on the link’s traffic/tonnage (costs associated
with re-routing during construction are not considered), but rather the link’s location and
existing characteristics. This cost can be divided into five components:

• Overhead contact system (OCS) — 2$�(

• Electrical substations — 2BD1

• Transmission lines — 2CA=

• Public works — 2?D1

• Signalling — 2B86=0;

The first four cost components are positively correlated with the roughness of the
link’s terrain (e.g. the electrification infrastructure is more expensive to construct in moun-
tainous segments than in plains segments). For each of those four categories, the cost
calculations utilize two parameters: a low value for ideal conditions, and a high value for
the worst possible condition. In order to create an upgrade cost estimate for all links in
the network, the difficulty of the terrain is scaled linearly based on the ratio, U, between
each link’s actual length and its straight-line length. U has a minimum value of one, which
represents a straight track. The cost of signaling depends on the complexity of replacing the
link’s existing signal systems, and is independent of terrain.
The cost of upgrading link 8 to be electrified is then written as:

248 = ;8

((
U8 − U<8=
U<0G − U<8=

)
(2$�(,<0G + 2BD1,<0G + 2CA0=B<8BB8>=,<0G + 2?D1,<0G) +(

1 − U8 − U<8=
U<0G − U<8=

)
(2$�(,<8= + 2BD1,<8= + 2CA=,<8= + 2?D1,<8=) + 2B86=0;,8

) , (4.9)
where ;8 is the length of link i, andU<8= andU<0G are the smallest and largest terrain difficulty
values across the network, respectively. The parameters are derived from Schwarm (1977),
Kneschke (1986), and Gattuso and Restuccia (2014).
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4.3.2 Rail Link Delay Function

To assign freight flows to the network, a link performance function is required, accounting
for the rising cost of using a link as link congestion increases. This subsection details
the formulation of the function as well as the process used to obtain the coefficients and
constants. The final form of the equation is provided in equation 4.12 at the end of this
subsection.

Several studies have applied a rail link performance function similar in form to the
Bureau of Public Roads (1964) function used in road assignment (Clarke, 1995). Uddin and
Huynh (2015) proposed a link delay function of the form:

C8 = C
0
8

(
1 +

(
G8

D8

)V)
(4.10)

where G8 is the flow on link 8, D8 is the link’s capacity, and C0
8
is the free-flow travel time.

Uddin suggested a value of 4 for the parameter V. D8 is a function of the link’s class, as well
as the number of tracks in the link and the frequency of sidings and switches.

The link’s total generalized cost is a function of the travel time, crew and cargo
costs, as well as the fuel cost. The fuel cost is the product of the link travel time, cost per
unit energy for the fuel source used, and power level required for the link divided by the
efficiency of the locomotive. For this analysis, an average train unit is the basis of analysis,
and the generalized cost is based on the cost for that train unit to traverse a link divided by
that train unit’s cargo mass. In this way, the network flows can be assigned as tons of cargo.
The power level used on each link is calculated using the link’s total resistance, as outlined
in the next subsection. The generalized cost function can then be written as follows:

28 (>A 2′8) = C8
(
2A4F'0C4 + 20A6>'0C4 + %8

[
5 D4;�>BC

)
/(=�<20A6>) (4.11)

where =�<20A6> is the mass of the cargo hauled by a train unit used in the analysis.
In order to separate the congestion cost and the resistance cost, we make the assumption that
the fuel consumption on each link is fixed, meaning the generalized cost function changes
as follows:

28 (>A 2′8) =
(
C8 (2A4F'0C4 + 20A6>'0C4 ) + C0

(
%8

[
5 D4;�>BC

))
/(=�<20A6>) (4.12)

64



4.3.3 Track resistance

In this chapter, we assume that trains have =! locomotives and =2 railcars. Each railcar has
a tare weight of <2 and a gross weight of <6 = <2 +<20A6>. Each locomotive has a weight
of <! . A loaded train then has a mass of <) = =!<! + =2<6.

Time and energy exertions associated with switching between diesel-electric and
electric locomotives are handled separately, and discussed in the switching costs section.

The resistance on the train is separated into bearing resistance, flange resistance, air
resistance, grade resistance, curve resistance, and brake resistance, and inertial resistance.
Each of these quantities is discussed and specified below.

Bearing resistance: Assuming a relatively new train (less than fifty years old), the bearing
resistance on each railcar will be (0 + ( 1#0G

<6
))<6, where #0G is the number of axles

on the railcar. According to AREMA committee (Gillespie and Hayes, 2003), when
<6 is measured in tons, 0 = 2.9 N

ton and 1 = 97.3# . Therefore, the total bearing
resistance is calculated as

∑=!+=�
:=1 (0<6,: + 1#0G,:).

Flange resistance: The bearing resistance on each component of the train, according to the
same CN examination, is<(�E), where E is the speed of the train relative to the track,
and < is the mass of the railcar or locomotive. � = 0.329 N·s

m·ton for locomotives(�!),
and 0.494 N·s

m·ton for railcars(��). The total flange resistance is E(�!=! + ��=�). The
flange resistance varies based on the track quality, so a factor : 5 ,8 can be applied to
adjust the flange resistance for link 8.

Air resistance: The air resistance (Hay, 1982) on each railcar is proportional to the square
of the train’s speed relative to the wind. For the purposes of this study, the wind speed
is assumed to be zero, so that the train’s speed relative to the track is equal to its speed
relative to the air. The air resistance on each component of the train becomes  E2.
When E is measured in m

s ,  takes on a value of 1.56 N·s2

m2 for conventional equipment,
or 2.06 N·s2

m2 . The total air resistance is
∑=!+=�
:=1  :E

2. A factor :0,8 can be used to
adjust the air resistance based on the average air density for link 8.

Grade resistance: The grade resistance is the resistance due to gravity. Unlike the other
resistances discussed, grade resistance can be positive (upgrades) or negative (down-
grades). The grade resistance for the train is given by <) 6 sin(\), where 6 is the
acceleration due to gravity and \ is the angle of incline. Rail inclines are small, al-
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lowing the small-angle approximation that sin(\) is approximately equal to the track
grade 6A.

Curve resistance: Curve resistance arises from the force of the track on the wheels within
a curve. According to AREMA (Gillespie and Hayes, 2003), curve resistance is
approximately equivalent to a grade of 0.04% per degree of curvature. That heuristic
would put the curve resistance at 0.45836<) 6 arcsin

(
30.48

2A

)
, where A is the link’s

radius of curvature in meters (an average radius of curvature is assigned to each link
based on the link’s U value).

Brake resistance: The brake resistance is the force of the brakes applied to the train. This
force is applied to maintain control of the train along down grades, and to stop the
train. Trains have three braking systems, the most powerful of which, the air brake,
takes large amounts of time to engage or disengage. Sometimes, the air brake is left
on along flat terrain or small up grades to prevent delays accruing from recharging
the pressure in the train tube. Electric locomotives have regenerative braking systems
that allow them to recover some braking energy. The regenerative braking system is
more reliable than a diesel-electric locomotive’s rheostatic braking system, allowing
electric locomotives to rely less so on the air brake.

The cost parameters for fuel efficiency and maintenance are derived from Whitford
(1981), Fritz, S.G. (2000), and Nektalova (2008). Because we model trains as flows,
it is beyond our scope to determine the actual brake usage on each link. We assume
that on level terrain, links with an average positive grade, or links with a negative
grade below a certain threshold, the incidental brake usage will be equivalent to the
resistance of a 0.1% grade. A threshold is determined using the grade that would
cause the train to exceed its desired speed along the link when utilizing the minimum
throttle level. Beyond that threshold, the brake force is set to the level that will allow
the train to reach its desired speed along the link while utilizing the minimum throttle
position. The throttle is not set to zero because the grade utilized is only the average
along the link, and even when a train is going downhill for a significant distance, the
motors will sometimes be kept running to prevent the railcars from bunching together
and reducing stability.

Inertial resistance: Inertial resistance is the positive or negative impedance from the train
changing its velocity. Trains must use energy to accelerate, and much of that energy is
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not regained when slowing down due to friction or the need to slow down faster than
would otherwise be necessary. The inertial resistance is <) 0. This study assumes
that the positive and negative inertial resistances will cancel each other out. In reality,
more energy is used in accelerating a train than the energy saved as a train decelerates,
so this is one category where the total energy consumption is understated and future
analysis could improve upon.

Total resistance: Combining the preceding formulae yields the total average resistance
along a link 8 as:

'8 =

=!+=�∑
:=1
(0<6,: + 1#0G,: +  : :0,8E2

8 ) + E8 (�!=! + ��=�): 5 ,8

+ <) 6(6A8) + 0.4536<) 6 arcsin
(
15.24
A8

)
+ '1A0:4,8 + <) 0

(4.13)

where : refers to each rail vehicle in the train unit.

Power level and speed: The power level used along the link, %8 is a function of the link’s
resistance and the train’s speed along the link:

%8 = '8E8 (4.14)

The train unit has a discrete number of possible power levels, which it will use to approach
the desired speed along each link. Equations (4.13) and (4.14) are solved iteratively to
determine each link’s associated power level, %8 , and base travel time, C0

8
= ;8/E8 . Those

values can then be used in equation (4.12).

4.3.4 Switching costs

For many O-D pairs, the lowest-cost route for the shipper may involve switching between
electric and diesel-electric operations en-route. This might occur when a small portion of
the overall network is electrified and an electrified path does not exist between on O-D pair,
or the electrified route is far enough away from the direct path that the savings from electric
operations are not worth the cost in added time. If the network does not allow any switching,
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electric trains would only be assigned between O-D pairs that have fully electrified, mostly
direct, paths between them, which is not realistic. The network allows flows to switch from
electric to diesel-electric operations (and vice versa) at certain nodes in order to simulate
more realistic routing.

461 nodes in the rail network have facilities adequate to allow for switching. At
those nodes, links between the electric and diesel-electric links represent the cargo time,
crew time, and energy costs associated with switching locomotives. The cost assumes an
hour-and-a-half per switch, and that six employees will be involved (including the train
operators and the yard workers). Whenever the path switches between operations, each train
accrues a cost of roughly $3800.

4.4 Solution methods

This section is divided into two parts. The first part discusses the genetic algorithm used
to solve the upper-level optimization problem (selection of links to electrify). Within each
generation, the “fitness level” of every solution must be calculated. This involves solving a
symmetric TAP subproblem to calculate the link flows, and using these values to calculate
the value of the upper-level objective function. Most TAP solvers assume separable link
costs, and the second part of this section explains the changes we made to accommodate
interactions.

4.4.1 Genetic algorithm

Procedure 4 describes how the genetic algorithm operates. GA is a heuristic and solution
optimality is not guaranteed. Therefore, this set of experiments test the base problem for
the best obtainable solution, across a set of GA inputs (and random starts) listed below:

• population size = 15

• generations = 150

• crossover probability = 0.1

• mutation probability ∈ {0.2, 0.4}

• elitism (best found solution each iteration carried to next iteration): True
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• runtime: No limit

A GA solution is defined by a binary string of length |�|, each digit corresponding to a
unique link and its electrification status. For the TAP sub-problem, the default settings from
the repository were used, and the target relative gap level was set to 10−4, as recommended
by Patil et al. (2021) for comparisons based on total cost.

Algorithm 4: Pseudocode for genetic algorithm
Genetic algorithm (N, A, B):

Initialize population;
Evaluation population;
while Termination criteria not met do

Select individuals with lowest total cost;
Breed new individuals through crossover and mutation;
Evaluate individual feasibility and fitness;
Replace least fit population with new individuals;

end

The GA base case solution was then compared with solutions obtained from an
“engineering judgement” heuristic: sorting links in descending order of operational saving
per cost of electrification G8 (2′8 − 28)/248 , and selecting links until the budget is exhausted.
This heuristic implicitly considers track resistance in the improvement between 28 and 2′8 .
The heuristic depends on link flow, and therefore requires a single run of the rail TAP to
obtain base link flows on all links. However, the heuristic overemphasized links that would
benefit from improved capacity in general, rather than electrification in particular, and was
therefore not selected.

4.4.2 Subproblem solution

Most algorithms for TAP are designed for the separable cost case. In this sub-section, we
describe the changes that need to be made for our cost structure, and derive a new flow
shift formula for this case. Our solution method is based on Algorithm B (Dial, 2006). The
main points of this algorithm are disaggregating link flows by origin, where the sets of used
links form acyclic subnetworks; shifting flows from longer-cost to shortest-cost segments
within each subnetwork; and updating these subnetworks by removing unnecessary links
and adding improving ones providing shorter paths.
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It is the second component (flow shifting) whose original derivation relied on sepa-
rable link costs, and which must be re-examined in light of interactions. We first show that
the link interactions in our specific formulation satisfy the symmetry condition needed for
the line integral formulation (4.4)–(4.8) to hold, and then re-derive the flow shift formula
for Algorithm B.

As discussed in the Cost Formulas section, all flow continuing on the same fuel type
has zero switching cost, whereas all flow changing fuel type has pre-defined switching costs.
Note that only the parallel diesel-electric link pair has cost function dependent on the sum
of the flows, and C (G) is identical for both links. The Jacobian takes the form:

�x =

©«

m(21 (x))
mG1

m(22 (x))
mG1

· · · m(2= (x))
mG1

m(21 (x))
mG2

m(22 (x))
mG2

· · · m(2= (x))
mG2

...
...

. . .
...

m(21 (x))
mG=

m(22 (x))
mG=

· · · m(2= (x))
mG=

ª®®®®®®¬
The off-diagonal elements are zero whenever the two links do not interact. In our

case, the only non-zero off diagonal elements are for parallel diesel-electric pairs. These
elements are calculated using the chain rule:

mC (G� + G� ) + 2�
mG�

=
mC (G� + G� )
m (G� + G� )

.
m (G� + G� )

mG�
=
mC (G� + G� )
m (G� + G� )

(4.15)

mC (G� + G� ) + 2�
mG�

=
mC (G� + G� )
m (G� + G� )

.
m (G� + G� )

mG�
=
mC (G� + G� )
m (G� + G� )

(4.16)

As can be seen, these two derivatives are identical, proving that the Jacobian is a
symmetric matrix, and establishing the validity of the formulation (4.4)–(4.8).

We next show that the Algorithm B flow shift procedure (equalizing cost between
routes) is valid even in the presence of link interactions. This result is more general, and
can be applied to any instance of symmetric costs depending on at most two links, not just
the ones we adopt in our study. We separate out the terms involving interactions as follows:
28 = 51(G8 , G 9) + 52(G8) and 2 9 = 61(G8 , G 9) + 62(G 9), with

m 51 (G8 ,G 9 )
mG 9

=
m61 (G8 ,G 9 )

mG8
.

In this operation, we have identified two paths (a lower-cost path c! and a higher-cost
c* ), and wish to shift flow between them to minimize the objective. Recall that the line
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integral formulation can now be written as:

� (x) =
∮ x

0
c(s) · 3s (4.17)

Partition the arc set A into three subsets �1, �2, and �3. Links in set �3 have separable cost,
depending only on their own flow. The travel time on the links in sets �1 and �2 depend on
the flows on two links: the link itself, and exactly one link in the other set. Mathematically,
there is a bĳection between sets �1 and �2, with the notation 8( 9) and 9 (8) used to denote
the counterparts of links in the other set. The notation for these cost functions lists the links
own flow first, and its counterpart’s flow second, that is, C8 (G8 , G 9 (8) ) and C 9 (G 9 , G8 ( 9) ). Let
? = |�1 | = |�2 | and < = |�1 | + |�2 | + |�3 |. The index 0 will be used to denote a generic
link, if it doesn’t matter which set it’s from.

As the line integral is path-independent, we choose the following integration path:

(0, 0, 0, . . . , 0) → (G1, 0, 0, . . . , 0) → (G1, G2, 0, . . . , 0) → · · · → (G1, G2, . . . , G<) .

The line integral then decomposes into a sum of ordinary integrals:

� (x) =
?∑
8=1

∫ (G1,...,G8−1,G8 ,0,...,0)

(G1,...,G8−1,0,0,...,0)
C8 (s) · 3s +

2?∑
9=?+1

∫ (G1,...,G 9−1,G 9 ,0,...,0)

(G1,...,G 9−1,0,0,...,0)
C 9 (s) · 3s

+
<∑

:=2?+1

∫ (G1,...,G:−1,G: ,0,...,0)

(G1,...,G:−1,0,0,...,0)
C: (s) · 3s

=

?∑
8=1

∫ G8

0
C8 (B, 0) 3B +

2?∑
9=?+1

∫ G 9

0
C 9 (B, G8 ( 9) ) 3B +

<∑
:=2?+1

∫ G:

0
C: (B) 3B .

Let �0 be +1 if link 0 is on c! , −1 if 0 is on c* , and 0 otherwise. Then for a flow
shift ΔG from the longest to the shortest path, the change on each link’s flow is given by
ΔG0 = �0ΔG and �0 = m (ΔG0)/m (ΔG). (This latter equation will be used when differentiating
via the chain rule below).
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The objective in terms of a flow shift of size ΔG is now

� (ΔG) =
?∑
8=1

∫ G8+ΔG8

0
C8 (B, 0) 3B+

2?∑
9=?+1

∫ G 9+ΔG 9

0
C 9 (B, G8 ( 9)+ΔG8 ( 9) ) 3B+

<∑
:=2?+1

∫ G:

0
C: (B) 3B ,

and when we differentiate with respect to ΔG, we obtain the following (the second term splits
into two terms from the Leibniz rule):

3�

3 (ΔG) =
?∑
8=1

C8 (G8 + ΔG8 , 0)�8 +
2?∑
9=?+1

C 9 (G 9 + ΔG 9 , G8 ( 9) + ΔG8 ( 9) )� 9

+
2?∑
9=?+1

∫ G 9+ΔG 9

0

mC 9

mG8 ( 9)
(B, G8 ( 9) + ΔG8 ( 9) )�8 ( 9) 3B +

<∑
:=2?+1

C: (G: + ΔG:)�: .

We will show that 3�/3 (ΔG) = ∑
0∈(A∪AE) C0 (x + Δx)�0. The interpretation is

that the derivative vanishes if ΔG equalizes the cost difference on the longest and shortest
segments, thus minimizing the Beckmann function. The second and fourth terms in the sum
are exactly what we need for the links in �2 and �3. We need to show

?∑
8=1

C8 (G8 + ΔG8 , 0)�8 +
2?∑
9=?+1

∫ G 9+ΔG 9

0

mC 9

mG8 ( 9)
(B, G8 ( 9) + ΔG8 ( 9) )�8 ( 9) 3B

=

?∑
8=1

C8 (G8 + ΔG8 , G 9 (8) + ΔG 9 (8) )�8 .

Using the symmetry condition mC 9

mG8 ( 9)
=

mC8
mG 9 (8)

, we have

?∑
8=1

C8 (G8 + ΔG8 , 0)�8 +
2?∑
9=?+1

∫ G 9+ΔG 9

0

mC8

mG 9 (8)
(B, G8 ( 9) + ΔG8 ( 9) )�8 ( 9) 3B .

Using the fundamental theorem of calculus and one-to-one correspondence of terms
in the two summations, it is clear that it equals

∑?

8=1 C8 (G8 + ΔG8 , G 9 (8) + ΔG 9 (8) )�8 , which is
the required form. Therefore, 3�/3 (ΔG) = ∑

0 C0 (x+Δx)�0 and Algorithm B flow shifts are
valid in our setting. Most implementations of Algorithm B (including ours) use a Newton
method to equalize the costs on these links. The denominator in Newton’s method can also

72



be adjusted to reflect interactions, as discussed more in Patil and Boyles (2022), but even
without this change existing implementations should still converge to the equilibrium.

4.5 Data sources

After obtaining solutions and validating the solution method for our formulation, the second
set of experiments involves policy testing and sensitivity analysis. These experiments
vary parameters such as total budget, demand data, electrification costs, electricity costs,
crew/cargo costs, policy changes in the form ofmonetary incentives. The base electrification
budget is $30 billion, roughly equivalent to electrifying 65, 000 kilometers of track. This
is varied by up to ±20%, or $24–36 billion. The analysis involves studying the return
on investment (ROI) in the form of reduced costs, incentivizing policymakers and private
stakeholders to upgrade infrastructure.

FAF4 provides demand data from 2010 and 2020, as well as forecasts for 2030
and 2040 (Bureau of Transportation Statistics, 2020). In addition, lowering the usage
cost of rail freight allows for modal shift from trucking to rail. This potential demand
variation is considered by increasing the demand data by up to 25% from base values.
Lastly, electrification costs and crew/cargo costs are also tested at increased values (+25%)
to gauge effects on the electrification solution. Under the current experiment formulation,
adjusting the electrification costs is equivalent to adjusting the budget for electrification, so
that parameter was not explored.

The North American railroad network has been extracted from the statewide anal-
ysis module (Alliance Transportation Group, 2013) provided by the Texas Department of
Transportation, originally based on the CTA rail network developed at Oak Ridge National
Laboratory (Center for Transportation Analysis, 2014). The dataset includes 35,424 links,
and has geographical information (length, latitude, longitude, grade category), ownership
information, and other auxiliary information. There are 28,289 nodes connected by these
links, denoting stations, yards and interchanges. Elevation data were obtained by overlaying
the network on the North American elevation grid (U.S. Geological Survey, 2007) using
ArcGIS (Figure 4.2). The demand data (in tons) has been obtained from the Freight Analysis
Framework, version 4 (FAF4).

As specified, operational mode changes can only occur at yards. Therefore, corridor
electrification is more sensible than individual link electrification. Candidate corridors
were obtained by connecting each yard to the nearest neighboring yards. Specifically, the
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Figure 4.2: North American rail network representation with elevation data
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following method was employed to find the set of candidate corridors and results can be
seen in Figure 4.3. This new shortest corridor network has tracks totaling 170, 000 kms
of track available for electrification, down from over 305, 000 kms in the full network.
The switching costs were obtained using the following assumptions for the locomotives:
1.5 hours to switch, throttle position 1 for diesel-electrics, 10% power for electrics, and 6
crew-equivalents manpower.

1. Calculate all pair shortest paths from all yards

2. Calculate all pair shortest paths from all yards, but stop exploring a branch if it reaches
a yard.

3. Compare the two sets and keep the paths common to both sets

Figure 4.3: Candidate corridor visualization with yards
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4.6 Results and Sensitivity analysis

All result visualizations are shown in Figures 4.4–4.7. The low budget, base case (medium
budget), and high budget cases lead to electrification of about 49,000 (30,000), 61,000
(36,000), and 70,500 (42,000) kms (mi), respectively. Only the base case results are shown
with the full network backdrop, all other results are shown on the shortest path corridor
network for better visibility. Figures 4.5 - 4.7 show the results as the overlap of different
scenarios. Figure 4.5 is a cumulative plot, where the medium budget (base case) and high
budget results are shown as increments over the low budget case. Figures 4.6 and 4.7 pivot
off the base case, therefore, we highlight the overlapping links as well as the differences.

The first observation is that the GA retained all corridors selected for the low budget
case in the base case and high budget case. However, this changes for the increased demand
and increased costs scenarios, given that the network OD matrix and costs change in the
two scenarios. This allows us to identify the most impactful corridors and stations, such as
all three of the major transcontinental routes (LA-Chicago, Oakland-Chicago, and Seattle-
Chicago), which the algorithm chooses for electrification in each scenario. There is a
wide variety of corridors selected across the entire network. The algorithm selects quite a
few mountainous routes where electrification provides the most benefits per train, but the
algorithm also appears to select for links that provide connectivity throughout the network.
This trend is best illustrated in figure 6, which seems to show that the increased demand
case shifts the selection from the more mountainous west to the more populous east and gulf
coasts. With higher demand, links that provide smaller benefits per train are more likely to
provide greater benefits overall.

Examining the base case in further detail, the algorithm selects 13.2% of the network
(by line-miles) for electrification, and predicts that 15.5% of final flow (by tonnage) will
use electrical traction. This reflects that busier corridors benefit more from electrification.
This also implies that most of the traffic along electrified links would be using electric rather
diesel-electric locomotives.

The increased demand scenario increases electrified corridor connectivity to several
new yards/stations. The increased cost scenario reduces selection from east and central US,
and chooses corridors from western US. We hypothesize this selection occurs due to the
higher elevations and grades for these tracks seeing benefit from electrification. The current
formulation does not incorporate any regional variations in the wholesale cost of electricity
or diesel.
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(a) Base case results with shortest path network

(b) Base case results with full network

Figure 4.4: Base case visualizations
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Figure 4.5: Results for varying electrification budget

An important question is the validation of the lower level flows. Uddin and Huynh
(2015) have shown the comparison of static traffic assignment (w/o electrification) patterns
for major links, given default link performance functions. Our model for the lower-level
problemadapts the cost function parameters to incorporate additional cost factors. Aggregate
metrics are easily available, and therefore can be compared to or model. We present a
comparison between our aggregate assignment metrics for the lower-level problem and
those provided by Bureau of Transportation Statistics data as well as Commodity Flow
Survey data. The total rail freight ton-miles (in millions) from our model is 1,627,854 as
compared to 1,712,567 for BTS data and 1,387,777 from the CFS data. Thus, it is within
5% of the BTS estimates and within 15% of the CFS estimates. Note that BTS and our
model uses FAF4 demand with different assignment model, while CFS data relies on survey
responses which can differ significantly.

Each sub-problem took 5 minutes to converge, and each GA instance took 36 hours
to finish on a Linux PC with i7 Processor (2.6 GHz) and 16 GB RAM. Given the long term
planning horizon, runtimes are not crucial, but still useful to scalability of the heuristic for
a large network.
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Figure 4.6: Results for increased demand case

4.7 Conclusions and future directions

This study presents a novel way of looking at the rail network electrification problem
using connections to the road traffic assignment problem. We formulate the problem as
a bi-level network design problem, where the lower level problem is a symmetric traffic
assignment problem, assigning goods flow instead of traffic. We then show the correctness
of Algorithm B flow shift formula for the symmetric traffic assignment problem, using it to
solve this sub-problem. The costs and network parameters incorporate electrification costs;
fuel, locomotive, and operational costs; and train resistance costs.

The North American railroad network is used as a test network to demonstrate our
method, show scalability for large networks, and draw insights. We observe and note some
corridors chosen in all different testing scenarios (varying budgets, opex, and demand), as
well as provide policy insights for planning. The key observations are as follows:

• While there seems to be some evidence of corridors in more mountainous terrain
producing better cost savings, overall there is a wide variety of corridors selected
across the entire network. This implies that providing broad connectivity might be
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Figure 4.7: Results for increased operations cost case

more important than electrifying the corridors with the best savings on a per-train
basis.

• The results for the increased demand case, illustrated in figure 6, indicate a general
shift in chosen corridors from the more mountainous west towards the more populous
east and gulf coasts. This is probably a result of the increased demand causing those
corridors to generate higher savings, even though they have fewer savings per train.
This is also evidence that the highest priority corridors might be routes through rough
terrain operating at or near capacity.

• Sensitivity to demand means long-term trends in the trucking industry could have a
substantial influence on the highest priority corridors for electrification.

The main limitations of this work are: 1) static power levels (once calculated); 2)
static brake usage assumption on links; 3) static electricity and diesel costs; and 4) lack of
incorporation of track ownership restrictions on path selection. The first three limitations
are relatively straightforward to tackle, although they increase problem complexity and
computation time significantly by introducing another layer of iterative calculations.
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An additional complication is partly based on the data available: because this
analysis uses large zoneswith few centroids, the simulationsmight overestimate the benefit of
electrifying well-traveled corridors that connect multiple zones. Studying how the selection
changes based on varying switching costs might show whether the results are skewed by
simulating a higher amount of connectivity than would actually exist. This problem could
partially be ameliorated by applying a cost to electric trains reaching centroid connectors to
reflect that some electric trains might require additional drayage over diesel-electric trains.
Properly calibrating such a cost would remain a difficult problem.

The methods formulated in this study can be adapted to consider social benefits from
changes in emissions, formulating the problem as one of social benefit maximization rather
than private cost minimization. The composition of the power grid affects the emissions
an electric locomotive causes, meaning the marginal social benefits of electrification and
the marginal private cost savings can vary substantially from link to link. In some parts
of the power grid where most of the electricity is provided by coal, an electric train might
even produce more emissions than an equivalent diesel-electric train (Walthall, 2019).
Understanding social benefits is important because the high variability of private return-on-
investment from electrificationmight necessitate public subsidies before capital construction
becomes possible. Prior studies have formulated social benefit maximization problems as a
single-level problems, thus reducing computational complexity.

Our formulation could also be generalized to reflect investments made at different
points in time, along with variations in future demand. Such a dynamic model could
present valuable insights about the proper timing of electrification, but poses challenges in
estimating future demand, costs, and budgets.
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Chapter 5

Effects of Origin-Destination Matrix
Errors on User Equilibrium

5.1 Introduction and motivation

Network models play a central role in transportation planning and forecasting. The inputs
to these models include both infrastructure and demand characteristics. To the latter end,
public agencies often have strategic plans forecasting population and traffic patterns decades
into the future (Texas Department of Transportation, 2015, 2019; State of California, 2018;
Massachusetts Bay Transportation Authority, 2018). Forecasting demand this far in advance
is challenging. For example, theremay be substantial changes in technology, land use, policy,
and demographics, which can significantly impact travel demand and its spatial distribution.

Given that demand matrices will likely have inaccuracies, despite best efforts at data
collection and demand modeling, it is important to understand how any errors in demand
matrices translate to errors in metrics used for planning (link flows, vehicle miles-traveled,
etc.) . The answer depends critically on the magnitude of demand errors, and on its sources
— systematic and random errors will have different effects.

Vehicle and transit OD matrices have traditionally been constructed from household
travel demand survey data. With technological advances, sources such as origin-destination
surveys, mobile phone data (Iqbal et al., 2014; Bonnel et al., 2018; Wang et al., 2018b),
GPS data (Çolak et al., 2015), social media data (Lee et al., 2019; Cheng et al., 2020),
fare collection data (Egu and Bonnel, 2020), etc. are now available for generating OD
matrix data. These methods lead to different OD matrix values, prompting investigations
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into similarities and differences between matrices developed from different methods (Day-
Pollard and van Vuren, 2015; Caceres et al., 2020; Egu and Bonnel, 2020). Some notable
observations from these studies are listed below:

• Household surveys no longer provide accurate data due to factors such as reporting
errors, sampling biases, and increasing costs. Other data sources are proving to be
cheaper, provide larger sample size, reduce time for collection and processing, and
provide information on temporary mobility patterns. Therefore, household surveys
produce random, uncorrelated errors in demand forecasting.

• Case studies show that household survey data uniformly underestimates trips (by up
to 30%), attributed to lack of survey information for non-residents taking work trips,
or survey and reporting biases.

• Traditional surveys have trouble capturing demand patterns from sparsely populated
areas such as mass transportation facilities, industrial parks, hospitals, etc. where no
households exist. This leads to spatial errors within specific geographical zones while
forecasting demand.

Multiple studies cited above either call for or propose a hybrid approach to demand fore-
casting integrating several data sources. While promising in reducing forecasting errors,
they cannot eliminate them entirely (the future is inherently unknowable), and it is therefore
important to know what kind of improvement in decision-making capability can be obtained
by reducing demand error to a lower level.

This study aims to address this question empirically, i.e., how do errors in demand
forecasts propagate into errors in model outputs? A practical use case for this analysis would
for a planner to account for historical inaccuracies in their demand data source to improve
future planning. Furthermore, if a desired level of accuracy is required in model outputs
for meaningful planning insights, we identify how much accuracy is needed in the demand
forecast. The magnitude and impact of demand errors also have implications on model
selection; when errors are higher, simpler models more robust to these errors can produce
more accurate results than more sophisticated and “realistic” models (Boyles and Ruiz Juri,
2019)

Concretely, this chapter focuses on the impact of demand uncertainty on static traffic
assignment under Wardropian user equilibrium (UE) (Beckmann et al., 1956). We form
our understanding by performing numerical experiments on a variety of networks. We
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specifically test three types of potential errors in demand: (a) uniform over- or under-
prediction across all origin-destination pairs, representing a systematic error in forecasting;
(b) noise in the specific entries of the demand matrix, representing random errors; and (c)
spatial correlation in demand perturbations, representing errors in land use forecasting in
specific parts of a network. These three error types have been chosen specifically due to
observations and identification among prior studies in this area, and to cover a wide range
of potential error sources. In practice, this chapter helps identify the level of accuracy
necessary in the source OD matrix estimations for traffic forecasts.

The main contributions of this chapter are as follows:

1. Characterization of the effect of uniform, OD-specific, and spatially correlated de-
mand errors on equilibrium system travel time, system congestion, and vehicle miles
traveled.

2. Comparison of forecast and observed demand growth on a large case study network
to demonstrate potential usage for planning purposes

Our hope is that practitioners can use these results to understand what level of accuracy they
need in their demand forecasting, in order to produce acceptable model outputs for planning.
As the specific sources of error in demand forecasting vary among regions and agencies,
using our results in this way would require identifying which of our three error models best
describes the types of errors encountered in a specific application context. To this end, our
description of the three error models is paired with real-world examples that might lead to
each type of error we model.

This chapter is organized as follows: the next section reviews the current literature
on this topic, followed by a description of the network data and experiment design. The
experiments’ results are presented, and their insights applied to a case study in a practical
network representing Austin, TX.We conclude with final takeaways, guidelines for practice,
and avenues for future work.

5.2 Literature review

Both intuition and past research suggest that longer timescales for forecasting induce more
forecasting error (Odeck and Welde, 2017; Odeck, 2013; Andersson et al., 2016; Cruz and
Sarmento, 2019). Some reasons for the observed mismatch between forecasts and reality
are:
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1. Inaccuracy of forecasting models and/or data (Nicolaisen, 2012)

2. Land usage or demographic change (Naess et al., 2015)

3. Change in relevant infrastructure development or construction timeline (Parthasarathi
and Levinson, 2010)

4. Optimism bias (Bain, 2009)

(Cruz and Sarmento, 2019) discuss other reasons and provide background reading
on this issue. The error in demand forecasts naturally raises questions about the effect
of input uncertainty on forecasting in terms of output uncertainty. De Jong et al. (2007)
provide a review of previous studies which investigate the propagation of uncertainty, as well
as provide confidence intervals for travel times and distances under uncertainty. Rasouli
and Timmermans (2012) follow up on this work by surveying the literature for uncertainty
propagation in travel demand modeling. Hartgen (2013) discusses how 20-year forecasts are
likely off by a minimum of ±30%, while other estimates can be off by higher percentages for
shorter durations. Flyvbjerg et al. (2005) discovered that about 90% of rail project forecasts
were over the observed demand by an average of 106%. The same study also discussed the
lack of substantial improvement in forecasts despite progress in corresponding forecasting
models. Nicolaisen and Driscoll (2014) as well as Van Wee (2007) corroborate and discuss
their observations of forecasting errors in infrastructure projects. Multiple studies discuss the
effects of demand uncertainty onmajor infrastructure project applications such as evacuation
planning, roadway pricing, network design problems, decision analysis for projects, and the
appropriate choice of modeling tools (Duthie et al., 2011;Waller et al., 2001; Ng andWaller,
2010; Ukkusuri et al., 2007; Yin et al., 2009; Boyles et al., 2018; Gardner et al., 2011; Li
et al., 2012; Patil et al., 2017; Boyles and Ruiz Juri, 2019; Venkatraman et al., 2021).

Zhao and Kockelman (2002) study the propagation of induced error across the four
step model in terms of compounding versus damping trends for each step. Input errors were
compounded in the trip generation, trip distribution, and mode choice steps, whereas traffic
assignment seemed to dampen some of the noise amplification from the first three steps.
Specifically considering traffic assignment, Waller et al. (2001) discuss the introduction
of uncertainty in the origin-destination matrix and how variance should not be neglected,
as using average results in overestimating network performance. The study recommended
using Monte Carlo simulations or inflation factors to account for input variance, in addition
to using multiple evaluation points. It provided motivation for multiple robust optimization
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approaches and stochastic analysis in both the static and dynamic assignment realms (Duthie
et al., 2011; Ng and Waller, 2010; Yin et al., 2009; Gardner et al., 2008; Do Chung et al.,
2012), but there has been no comprehensive quantification of the impact of uncertainty on
traffic assignment.

5.2.1 Error type discussion

This chapter discusses error types and their effect, and it is important to understand what
situations can give rise to these three types of errors. A brief overview was provided in the
introduction, this subsection delves deeper into these error types.

Spatial errors: Caceres et al. (2020) observe spatial errors in trips for zones associ-
ated with mass transportation facilities, university campuses, industrial parks and hospitals.
These zones are often not included in traditional surveys due to lack of residential units, but
are captured with mobile data or intercept surveys. Egu and Bonnel (2020) observe spatial
errors in OD matrices due to survey data trips being skewed spatially towards peripheral
zones. Janzen et al. (2018) observe spatial disparities between call record data and travel
survey data, attributed to potential over-sampling of frequent callers and long-distance trav-
elers, correlated with higher education and wealth levels. Iqbal et al. (2014) note that call
record data is skewed toward certain zones such as mass transportation facilities, corrobo-
rating Cacares et al.’s observations. Osorio-Arjona and García-Palomares (2019) observe
spatial disparities between twitter trip data and survey data, noting that central districts of
Madrid are overestimated in the Twitter data, potentially due to data bias (Twitter users are
predominantly 20-39 y.o.) or lower data from commercial/industrial zones and low-income
areas.

Correlated errors: Caceres et al. (2020) also compare the OD matrices obtained
from traditional survey data and mobile phone data. Using matrix sparsity analysis, they
conclude that mobile data captures a higher percentage of mobility of all possible OD
connections and demonstrate a strong linear relationship between trips generated according
to survey data versus those generated according to phones. Egu and Bonnel (2020) observe
systemic underestimation of trips forecast using survey data by up to 30% on an average
weekday. They hypothesize that the cause is either lack of non-resident data in surveys
(unlikely) or under-reporting of trips (validated using prior GPS data studies). Bonnel et al.
(2015) observe uniform errors between survey data trips and mobile data trips with a near
linear relation ('2 = 0.96) with a slope close to 1. At the other extreme, Janzen et al. (2018)
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find that survey data results in uniformly under-reported trips by a factor of 2. They note
that this error is caused by inaccurate weighing constants in mathematical models, skewing
the entire trip table uniformly.

Random errors: These types of errors are the hardest to quantify, solely due to the
sheer variety of their possible sources. Surveyed studies observe this type of error in OD
matrices due to survey biases, small sample sizes, inaccurate reporting, falling response
rates, level of detail, and modelling assumptions.

5.3 Background and experiment design

The real-world networks, their characteristics, and the sample sizes we used to study their
behavior are specified in Table 5.1. All networks (save for the one used in the case study)
have been sourced from the TransportationNetworks for Research repository (Stabler, 2019).
For our experiments, we used an implementation of Algorithm B (Dial, 2006), a bush-based
algorithm, to solve the traffic assignment problem. The source code for the following
experiments is publicly available (Boyles, 2019; Liao, 2019).

As can be seen in Table 5.1, a variety of network sizes were chosen to provide better
insight into error propagation. Networks were chosen for low computation time to enable
Monte Carlo sampling of perturbed OD matrices, as well as having node coordinate infor-
mation to model spatial correlation. The exact sample size used forMonte Carlo simulations
= for each network is shown in the table, which also includes flow-weighted volume-capacity
ratio (WVC) as a measure of network-wide congestion. (The exact definition of this metric
is provided later in this section).

Table 5.1: Description of Networks Used

Nodes Links Trips WVC =

Berlin-Friedrichshain 224 523 11,205 0.473 200
Berlin-Mitte-Center 398 871 11,482 0.333 200
Berlin-Mitte-Prenzlauerberg-Friedrichshain-Center 975 2,184 23,649 0.286 100
Berlin-Prenzlauerberg-Center 352 749 16,660 0.431 200
Berlin-Tiergarten 361 766 10,755 0.313 200
SiouxFalls 24 76 360,600 1.474 500
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5.3.1 STA experiment design

In order to simulate different sources of prediction error, we perturbed OD matrices in three
ways.

The first method is uniform perturbation, also referred to as correlated error.
This method globally scales the demand values 3AB by a common value. This is intended to
simulate systematic errors in forecasting network demand, perhaps due to an estimation error
in trip generation parameters, or failing to anticipate technological changes with network-
wide impacts on demand. Specifically, for some constant : , in uniform perturbation we
replace each entry in the OD matrix with :3AB.

The second method is OD-specific perturbation, also referred to as random error.
This method replaces each OD matrix entry with :AB3AB, where :AB is an OD-specific
scaling factor. In our experiments, we generated :AB by sampling from independent and
identical normal distributions with a fixed mean ` = 1 and standard deviation f (truncated
at zero if a negative value is sampled). This choice of mean implies that the OD matrix
does not contain any systematic error, but there are errors in individual entries, perhaps due
to sampling errors in the demand forecasting process, or latent noise in future predictions.
Uniform perturbation is a special case of OD-specific perturbation with ` ≠ 1 and f = 0.

We tested the following values of f: {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.
The number of samples tested for each f is given in Table 5.1, where each sample involved
solving TAP with the original network and a newly generated f-perturbed OD matrix.
Monte Carlo simulations allowed us to describe the relationship between the variance of
the perturbation noise and the outputs, as well as for the confidence intervals for the output
metrics described later in this section.

The third method is spatially-correlated perturbation, also referred to as spatial
error. This method uses network geographical data to perturb demand within a certain
region, simulating heterogeneous error in OD demand sampling. The intent is to simulate
errors in estimating demand to or from zones in a specific region, as might happen if specific,
spatially clustered demographic groups are undersampled, or if there are errors forecasting
future land use in specific regions.

We experimented with this method in two ways. In the first, we perturbed demand
from nodes closest to the center of the network set in 25% increments ? using the following
steps:

1. Identify the geographic center by taking themaximumandminimum latitudes latmin , latmax
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and longitudes lonmin , lonmax from the nodes in the network

2. Take the midpoint between the aforementioned latitudes lat =
(
latmin−latmax

2

)
and

longitudes lon =
(
latmin−latmax

2

)
as the center of the network 2.

3. Calculate the distance between each node 8 and 2 as 38 =
√(

lon8 − lon
)
+

(
lat8 − lat

)
4. Sort nodes by 38 and select a given proportion ? of nodes by lowest 38 as a set (?.

Round down in case the exact proportion of nodes in the network is not an integer.

5. Scale demand associatedwith the zones found in (? by a given factor : in the following
three ways to generate three separate geographically perturbed OD matrices:

(a) Scale only demand that originates at selected zones

(b) Scale only demand that terminates at selected zones

(c) Scale all demand that either originates or terminates at selected zones

6. Find the UE solution associated with all three matrices and collect results.

7. Repeat for several proportions ? and perturbation factors : to generate trends and to
characterize changes as demand shrinks or grows.

The second set of spatially-correlated perturbation experiments was meant to study
the effect of inconsistent demand measurement error across an ODmatrix. We tested for the
difference between output metrics if demand scaling was concentrated on origins near the
center of the network, or if the same total demand was distributed globally across all origins
in the OD matrix using a uniform perturbation factor. This followed the same process as
described above with three changes:

1. In Step 5, instead of scaling demand in three ways, we only scale demand that
originates at selected zones as in (a).

2. We take the resulting OD matrix and find the associated total demand. We divide this
total by the total demand of the unperturbed matrix to find a scalar factor which we
use to create a uniformly scaled OD matrix with the same total demand.

3. We find two UE solutions instead of three for a given ? and : pair, one associated
with the partially perturbed matrix and one with the uniformly scaled matrix.
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As before, both scaling factor and proportion of nodes scaled were varied to more fully
characterize the potential effects of local over- and under-sampling.

Some of our analyses involve comparisons across these three types of error (uniform,
OD-specific, and spatially-correlated). To control for the overall relative error in the OD
matrix when making these comparisons, consider the following error metric:

' = E

[ ∑
A ,B∈/

(3̃AB − 3AB)2
(3AB)2

]
where 3̃AB is the perturbed demand between node A and node B and / is the set of

all zones. For each of the three methods, 3̃AB is equivalent to

1. :3AB for uniform perturbation, where : is a single random scalar sample drawn from
a # (1, f* ) distribution that is fixed for all AB.

2. :AB3AB for OD-specific perturbation, where :AB is a random scalar sample drawn
from a # (1, f$�) distribution per OD pair, where the distribution is independent and
identical for all AB.

3. :AB3AB for spatially-correlated perturbation, where :AB is a single random scalar sam-
ple drawn from a # (1, f(�) distribution if AB is an OD pair that has been designated
as being scaled and 0 otherwise. :AB is fixed for all scaled OD pairs.

To hold average OD matrix error equal across all three perturbation methods’ OD matrices,
fix ' for the three methods and solve for the f of each perturbation method’s distribution.
We found that if f* = f$� = ?f(� , the overall relative error in the OD matrices is the
same.

For a given input error parameter f (equivalent to f* , f$� , and ?f(�), we
characterized the expected UE output error from the three methods by finding the average
result of the normal distribution describing the input OD matrix error of each. To find this
average for each of the three methods, we followed this procedure:

1. For uniform perturbations, we take a weighted average of the normalized output met-
rics associated with each discrete measurement of : found in our earlier experiment,
with a weighting for each : based on the area it covers in the # (1, f) distribution.
This is effectively an interpolation of our discrete perturbation scaling results to a
smooth function that we take a weighted average for.
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2. For OD-specific perturbations, we take the value of the normalized output metrics
associated with the given f as found in the prior experiments.

3. For spatially-correlated perturbations, we follow a method similar to uniform pertur-
bations except for each : weight we use the area each : covers under # (1, ?−1f) in
order to account for the more concentrated input error spatially-correlated perturba-
tions produce. For these experiments, we used a ? of 25%.

Output metrics serve to quickly characterize the UEs generated by each OD matrix.
The metrics used are total system travel time (TSTT), flow-weighted volume-capacity ratio
(WVC), and total vehicle miles traveled (VMT). They are defined as follows:

TSTT =
∑
8∈#

C8E8

WVC =
∑
8∈#

E8∑
9∈# E 9

E8

28

VMT =
∑
8∈#

;8E8

where, # is the set of all links in the network,
E8 is the volume on link 8,
28 is the capacity on link 8,
C8 is the travel time on link 8, and
;8 is the length of link 8.
As a proxy for congestion, WVC better scales the effect of highly congested, low

capacity links (and vice versa) than if volume over capacity was not weighted by flow.
All experiments were conducted on a machine running Ubuntu 18.04 with an Intel

i5 processor @ 3.30 GHz and 8 GB of memory. All UE solutions were calculated to a
relative gap of 10−6.

5.4 Results

5.4.1 Uniform perturbation

For uniform perturbations, TSTT, WVC, and VMT scale with the demand factor. As seen
in Figure 5.1, WVC and VMC scale close to linearly, but for WVC the slope may change
depending on the network. For example, given a unit increase in demand perturbation factor,
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there is an increase of 0.3 in WVC for the Berlin-Mitte-Center network compared to 1.5 for
the SiouxFalls network, but for both networks VMT holds at a steady 1:1 relative increase
per unit of demand scaling factor.

Figure 5.1: OD matrix scaling effect on TSTT and WVC

In contrast, TSTT shows a more complicated relationship with the demand factor.
Comparing the two networks, we see that when a network’s WVC is less than one (i.e.,
the network is uncongested), TSTT scales close to linearly with the perturbation factor,
only increasing rapidly once WVC exceeds one and the network enters a congested regime.
Overestimating demand will have a much larger impact on TSTT than underestimating
demand, but it may not be as important if a traffic planner ismore concerned aboutmeasuring
congestion or miles traveled than total time spent traveling.

For a +25% error in input demand, the network with the greatest output error
(SiouxFalls) shows a 200% larger TSTT, a 50% larger WVC, and a 30% larger VMT. That
said, an uncongested network like Berlin-Mitte-Center only displays a 30% change across
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the board, as does SiouxFalls when the input error is −25%, taking the network out of its
congested state.

5.4.2 OD-specific perturbation

Because OD-specific perturbation involves noise, the resulting perturbed OD matrices are
stochastic instead of deterministic like both uniform and spatially-correlated perturbation.
Consequently we require Monte Carlo sampling to characterize the outcomes and for the
results for this section to be displayed differently than for the two other perturbationmethods.
In addition, because fluctuations in the UE from OD-specific demand error tend to average
out across all OD pairs, this subsection focuses mainly on describing the spread of output
metrics for any given OD-specific perturbation scenario instead of drawing a clear trendline
from lower to higher f.

The degree to which output metrics vary under OD-specific perturbation depends
on the average error in demand value. When observed demand levels deviate from their true
values by an average of 2% or less with no bias, the resultant UE TSTT, WVC, and VMT all
are within 1% of their true values. For larger demand errors, up to 10% error in OD matrix
entries gives output metrics correct to within 5% of their true values for nearly all cases.
For average error in demand up to 50%, TSTT, WVC, and VMT can still be expected to
hold to within ±10% of their true values. As shown in Figure 5.2, these observations hold
for every network we studied. For the same flow patterns, TSTT and WVC tend to exhibit
larger changes than VMT due to link performance functions vis a vis link lengths. Table 5.2
summarizes the results of these trials.

5.4.3 Spatially-correlated perturbation

In the spatially-correlated perturbation tests, perturbing only origin or destination demand
had almost identical effects on the output metrics, but perturbing both together—increasing
total demand more than looking at origins or destinations individually—resulted in more
extreme values as shown in Figure 5.3. Note the similarities between the trends in this
figure with those of the Berlin-Mitte-Center uniform perturbation results in Figure 5.1. The
trendlines are near identical in shape, with the only difference being that changes in response
to the same demand scaling factor are dampened when the proportion of nodes affected is
less than 100%. This dampening effect becomes more pronounced as the percentage of
nodes perturbed is decreased (e.g., the change between 100% of nodes perturbed and 75% is
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(a) f = 0.02

(b) f = 0.1

(c) f = 0.5

Figure 5.2: Output metrics for all OD-specific perturbation trials
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much less than between 50% and 25%). As expected, accurately determining UE solutions
requires measuring demand at as many nodes as possible (equivalent to minimizing ? in
this experiment).

Figure 5.3: Effect of spatially-correlated perturbation methods on Berlin-Friedrichshain
(rows denote the proportion of nodes perturbed ?)

Under the conditions for this experiment, we see a 30% increase in TSTT and
VMT when we perturb all demands by 25% (although WVC growth is slightly smaller than
for Berlin-Mitte-Center), just as we do in the mean scaling scenario. There is almost no
dampening effect when only 75% of nodes are perturbed, but the output metric error falls
to 20%-25% and 10%-15% when only a half and a quarter of node demands are perturbed
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respectively, depending on whether demands are perturbed by only one of or both origin
and destination.

In the next experiment comparing the concentrated and global perturbation scenarios
with fixed demand, the difference between the TSTTs of each scenario was within ±5% for
demand scaling factors between 0.75 and 1.25. In fact, all networks studied were within
this 5% error range, with half of them demonstrating even less variation. In line with our
finding for uniform perturbation, TSTT diverges more at high scaling factors, but WVC
sees its most extreme changes at low scaling factors as links become less congested. VMT
behaves linearly in response to all scalings. Differences were minimized when a higher
proportion of nodes were affected by the concentrated perturbation, as the demand situation
approached that of the spatially invariant case. Full results from the Sioux Falls network can
be seen in Figure 5.4. A generalized conclusion across networks implies that the proportion
of nodes being perturbed has little impact on observed metrics, given that the magnitude of
the perturbation is small (±25%). Barring major inaccuracies in demand projections, spatial
effects cancel out due to the lack of correlation between errors across the OD matrix.

Figure 5.4: Effect of spatially-correlated vs. uniform demand perturbation on SiouxFalls

(Note that this last experiment has no analogue in the uniform and OD-specific
perturbation experiments because here we are contrasting two different perturbed demand
scenarios instead of perturbed scenarios with the unperturbed case.)

5.4.4 Parallel comparison

Figure 5.5 compares the results of our experiments across all three error types we identi-
fied given equal induced ' for two representative networks, Berlin-Mitte-Prenzlauerberg-
Friedrichshain-Center (bmpfc) and Sioux Falls. The metric values are reported relative to
the unperturbed base case.

For f < 0.1, the metrics do not change more than 1% even for the most congested
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network, Sioux Falls. The largest f we tested, 0.5, did not cause values in any network to
deviate more than 5%, but more than doubled the TSTT in the Sioux Falls network under
uniform perturbation. In general, uniform perturbations show the highest TSTT, VMT, and
WVC deviations. In contrast, OD-specific perturbations result in relatively small errors,
due to cancellation effects between OD pairs with overpredicted demand and those with
underpredicted demand. The error due to spatial correlation fell between these two.

Figure 5.5: Parallel comparison between bmpfc and SiouxFalls
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5.5 Case study: Austin

This section describes a case study on a network representing Austin, TX, based on network
conditions from approximately 15 years ago. This is a much larger network than the
ones tested in the previous section (7,466 nodes, 1,117 zones, 18,710 links, and 695,013
trips). Our experiments are based on observed population growth rates in this region since
this network was created and the OD matrix was estimated. For the spatially-correlated
perturbations, our experiments are informed by these observations: downtown Austin has
grown significantly, as have certain neighborhoods in northern and southern suburbs due
to new tech employment centers there. East Austin has gentrified, with higher-occupancy
housing, while west Austin has changed less due partially to zoning laws.

This case study explores the differences between three variations on growth rate,
specifically their effect on network performance as well as flows. We model these three
cases as follows:

1. The demand growth rate is 2.08% annually, uniform across the network (this was the
annual population growth rate between 2000 and 2010 (Bureau, 2010)).

2. The demand growth rate is 3% annually, uniform across the network (this was the
observed population growth rate between 2010 and 2019).

3. The annual demand growth rates for north and south Austin are 3.25%, for east Austin
3%, and for the rest of the network, 2.75%. We call this the heterogeneous growth
scenario below.

In particular, the first scenario would represent a forecast based on population growth rates
at the time the network was created. In reality, the population grew faster than predicted,
with the second scenario being a truer representation of what actually occurred. The third
scenario is a more refined version of the second that accounts for spatial heterogeneity in
population growth.

These factors are applied to trips in the OD matrix based on the origin node to
account for home-to-work trips and extrapolated over 10 years. The resulting OD matrices
correspond to demand forecasts for each of the three cases, which we used to find UE
solutions along with link flows.

The topline results are shown in Table 5.3. The first thing to notice is the difference
between the naive 2.08% forecast and the other two in terms of TSTT: the deviation is
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over 9% even though the difference in annual growth rate was less than 1%. The second
key observation is the lack of substantial differences in all metrics between the spatially
distributed forecast and the uniform growth forecast. Figure 5.6 focuses on the volume-
capacity ratio among all links in the Austin network, where we observe that the 3% growth
rate and the regionally varied rate exhibit very similar link-by-link changes despite the
regional variation in growth rate in the latter scenario. This is corroborated by the results
seen in the fixed demand, globally scaled versus spatially concentrated demand experiments
from the prior section.

Figure 5.6: Change in V/C between growth rate assumptions relative to the no-growth
scenario

5.6 Conclusions and future work

Inaccuracy in demand forecasting is difficult to avoid. To understand the impact of OD
matrix input uncertainty on the traffic assignment problem, we studied the behavior of three
keymetrics—total system travel time, flow-weighted volume-capacity ratio, and total vehicle
miles traveled—across three perturbation methods inspired by commonly observed errors
in demand modeling. Uniform perturbation implies a global over- or underestimation, OD-
specific perturbation implies individual OD-pair errors, and spatially-correlated perturbation
covers systematic errors in a specific geographical region.

Under uniform perturbation, we see that WVC and VMT scale linearly with pertur-
bation factors, but that TSTT begins exhibiting faster-than-linear growth once demand enters
a congested regime. Consequently, the degree to which any metric changes under uniform
perturbation (as well as spatially-correlated perturbation, to a lesser extent) is dependent
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on the congestion level of the unperturbed network. We observed a 30% change in output
metrics for a uniform 25% increase in demand for an uncongested network, and even larger
changes for a congested network. Under OD-specific perturbation, to ensure output metric
accuracy to within 10% of their true values, OD matrix demands need only be correct to
within an average of±50% of their true values provided there is no systematic over- or under-
estimation. For accuracy within 5%, we can tolerate up to an average of ±10% error, and for
accuracy within 1%, that tolerance drops to ±5%. Under spatially-correlated perturbation,
we see a dampened version of the patterns observed in the uniform perturbation case as only
a fraction of OD pairs experience the perturbation factor. Recasting this as a comparison
between demand growth (or decay) being uniform or concentrated, we observe that for small
changes in total demand (≤ 25%), the output metrics do not change significantly (i.e., ≥ 5%)
regardless of the proportion of nodes that experience the spatially-correlated perturbation.

Comparing the three perturbation methods for a fixed, unbiased ODmatrix error, we
see that uniform perturbation results in the largest average deviation in all output metrics,
while both spatial and OD-specific perturbations exhibit errors in the same order of mag-
nitude. (Note that unbiased demand estimates can still result in biased metrics, since they
are related in a nonlinear way.) Nevertheless, if the forecast is unbiased, our experiments
suggest that the standard error in demand would need to exceed 10% before the bias in the
output metrics is greater than 1%.

Although our experiments have found strong patterns in the behavior of TAP in
response to different assumptions of demand error and network congestion levels, we have
not yet fully characterized the implications of these input errors. In a future study, we hope
to examine the distribution of changes in link-by-link metrics in addition to system-wide
metrics, as well as the interactions between uniform, OD-specific, and spatially correlated
error to more accurately represent real-world error in demand sampling. We also plan to
extend this analysis to multi-scenario analyses in which scenarios must be ranked and a
preferred alternative selected.
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Table 5.2: Summary of OD-specific Perturbation Trials

perturbation scenario tstt wvc vmt
net f mean std mean std mean std

friedrichshain-center

0.000 7.286e+05 na 0.473 na 1.731e+07 na
0.001 7.286e+05 5.484e+01 0.473 0.000 1.731e+07 1.185e+03
0.005 7.286e+05 2.927e+02 0.473 0.000 1.731e+07 6.190e+03
0.010 7.286e+05 5.526e+02 0.473 0.000 1.731e+07 1.137e+04
0.020 7.286e+05 1.186e+03 0.473 0.000 1.730e+07 2.512e+04
0.050 7.287e+05 3.058e+03 0.474 0.001 1.730e+07 6.222e+04
0.100 7.296e+05 5.762e+03 0.474 0.002 1.731e+07 1.191e+05
0.200 7.296e+05 1.177e+04 0.474 0.004 1.731e+07 2.267e+05
0.500 7.346e+05 2.942e+04 0.476 0.010 1.742e+07 5.527e+05

berlin-mitte-center

0.000 1.051e+06 na 0.333 na 2.178e+07 na
0.001 1.051e+06 6.872e+01 0.333 0.000 2.178e+07 1.080e+03
0.005 1.051e+06 3.501e+02 0.333 0.000 2.178e+07 5.347e+03
0.010 1.051e+06 6.721e+02 0.334 0.000 2.178e+07 1.081e+04
0.020 1.051e+06 1.328e+03 0.334 0.000 2.178e+07 2.048e+04
0.050 1.051e+06 3.738e+03 0.334 0.001 2.178e+07 5.777e+04
0.100 1.052e+06 6.542e+03 0.334 0.002 2.179e+07 1.049e+05
0.200 1.053e+06 1.424e+04 0.335 0.004 2.179e+07 2.256e+05
0.500 1.064e+06 3.644e+04 0.339 0.009 2.194e+07 5.787e+05

bmpfc

0.000 2.362e+06 na 0.286 na 5.714e+07 na
0.001 2.362e+06 4.606e+01 0.286 0.000 5.714e+07 9.858e+02
0.005 2.362e+06 2.093e+02 0.286 0.000 5.714e+07 4.534e+03
0.010 2.362e+06 4.250e+02 0.286 0.000 5.714e+07 9.239e+03
0.020 2.363e+06 8.660e+02 0.286 0.000 5.715e+07 1.864e+04
0.050 2.363e+06 2.170e+03 0.286 0.000 5.715e+07 4.685e+04
0.100 2.363e+06 4.515e+03 0.286 0.001 5.715e+07 9.777e+04
0.200 2.363e+06 7.495e+03 0.286 0.001 5.715e+07 1.596e+05
0.500 2.376e+06 2.072e+04 0.288 0.002 5.743e+07 4.504e+05

berlin-prenzlauerberg-center

0.000 1.400e+06 na 0.431 na 2.897e+07 na
0.001 1.400e+06 8.810e+01 0.431 0.000 2.897e+07 1.324e+03
0.005 1.400e+06 4.053e+02 0.431 0.000 2.897e+07 6.240e+03
0.010 1.400e+06 8.464e+02 0.431 0.000 2.897e+07 1.261e+04
0.020 1.400e+06 1.536e+03 0.431 0.000 2.897e+07 2.355e+04
0.050 1.400e+06 3.794e+03 0.431 0.001 2.897e+07 5.877e+04
0.100 1.401e+06 8.046e+03 0.431 0.002 2.898e+07 1.227e+05
0.200 1.402e+06 1.810e+04 0.432 0.004 2.901e+07 2.591e+05
0.500 1.416e+06 4.383e+04 0.436 0.010 2.914e+07 6.179e+05

berlin-tiergarten

0.000 7.168e+05 na 0.313 na 1.681e+07 na
0.001 7.168e+05 6.717e+01 0.313 0.000 1.681e+07 1.179e+03
0.005 7.169e+05 3.498e+02 0.313 0.000 1.681e+07 6.302e+03
0.010 7.169e+05 6.256e+02 0.313 0.000 1.681e+07 1.115e+04
0.020 7.168e+05 1.173e+03 0.313 0.001 1.681e+07 2.074e+04
0.050 7.174e+05 3.095e+03 0.313 0.002 1.682e+07 5.537e+04
0.100 7.171e+05 6.431e+03 0.313 0.003 1.681e+07 1.197e+05
0.200 7.173e+05 1.306e+04 0.314 0.006 1.682e+07 2.459e+05
0.500 7.212e+05 2.973e+04 0.316 0.012 1.684e+07 5.922e+05

SiouxFalls

0.000 7.480e+06 na 1.474 na 3.419e+06 na
0.001 7.480e+06 1.298e+03 1.474 0.000 3.419e+06 2.354e+02
0.005 7.480e+06 6.501e+03 1.474 0.000 3.419e+06 1.188e+03
0.010 7.480e+06 1.236e+04 1.474 0.001 3.419e+06 2.247e+03
0.020 7.479e+06 2.825e+04 1.474 0.002 3.420e+06 4.919e+03
0.050 7.480e+06 6.561e+04 1.474 0.004 3.420e+06 1.141e+04
0.100 7.483e+06 1.375e+05 1.473 0.008 3.422e+06 2.375e+04
0.200 7.523e+06 2.579e+05 1.473 0.015 3.427e+06 4.377e+04
0.500 7.838e+06 7.000e+05 1.486 0.038 3.459e+06 1.074e+05
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Table 5.3: Results of Austin Forecasts after 10 Years

Demand TSTT WVC VMT

No growth 695,013 19,078,380 1.188 3.314e10
2.08% annual growth 853,885 38,900,203 1.422 4.120e10

3% annual growth 934,039 53,882,962 1.542 4.535e10
Heterogeneous growth 939,298 53,272,535 1.549 4.570e10
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Chapter 6

Convergence behavior for traffic
assignment characterization metrics

6.1 Introduction

Traffic assignment is a common tool in transportation planning, and predicts how travelers
will choose routes accounting for congestion effects. Traffic assignment is used in long-
term planning, as the final step of the traditional four-step model, to assist in decision-
making based on link flows, select link analysis, or shortest-path analysis. It also appears
as a sub-problem in network design, toll-setting, and other related bi-level optimization
problems. Despite many advances in dynamic traffic modeling, static assignment remains
common in current practice. And despite advances in technology and algorithmic efficiency,
computation times are still a relevant issue as agencies move to more detailed, multiclass
models, or when assignment is a subproblem in a larger iterative scheme (feedback models,
trip table estimation, network design, and so forth). This chapter therefore focuses on the
static traffic assignment problem (TAP) as it is traditionally formulated.

This chapter investigates the convergence behavior of other metrics — specifically
total system travel time, vehicle-miles traveled, equilibrium path flows, and the set of used
paths — on twelve standard networks. We thus aim to generalize the recommendations of
Boyce et al. (2004) based on other networks and metrics.

The goal of this chapter is to provide guidance on the level of convergence needed,
depending on the metric of interest. This allows computational resources to be used as
effectively as possible, and not wasted on unnecessary precision beyond the requirements of
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a particular application.

6.1.1 Contributions

The central question addressed in this chapter is the level of precision needed in the solution.
An insufficiently-converged solution will not produce reliable estimates for planning. An
overly-stringent convergence criterion, on the other hand, wastes computational resources
that can be better spent on other model components or tasks. (For instance, examining
additional alternatives in a Monte Carlo simulation or solutions in a bilevel program.) The
appropriate convergence level depends on the application context: the specific network,
the specific metrics of interest, and the decision being made. In particular, the appropriate
convergence criterion when producing a single point prediction is likely different than that
when selecting a preferred alternative among several. The latter problem introduces several
complications relative to the former, so this chapter focuses primarily on the convergence
level needed to stabilize a metric for a single modeling scenario.

The main contribution of this chapter is to identify the convergence behavior of
five metrics on twelve different networks, thus generalizing the analysis of Rose et al.
(1988) and Boyce et al. (2004). We examine the rates of convergence of these metrics
compared to that of relative gap (the most common convergence metric), and identify trends
based on network size and congestion level. We additionally describe the heterogeneity
in convergence rates between different links within the same network. These analyses
primarily have implications for choosing a convergence level for analysis of a particular
scenario, and also lay the groundwork for future studies on appropriate convergence criteria
formulti-scenario analyses. Our experiments also include tests of different traffic assignment
algorithms, and examining a scenario with heterogeneous user classes. We also compare
alternative gap functions in current use, suggesting how our results for one gap function can
be translated to these alternatives.

The rest of this chapter is structured as follows: Section 6.2 provides mathematical
specifications of the TAP metrics we study. We next describe our experimental structure,
the networks we use, and the design of particular scenarios in Section 6.3. We next provide
the results of these experiments, and our interpretation of these results in Section 6.4. We
finally conclude with a summary of our findings and topics for future study.
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6.2 Background

This study uses a combination of the TAPAS and Frank-Wolfe algorithms for its primary
experiments, and also uses AlgorithmB (a bush-based algorithm) to test transferability of the
results. In our analysis, we do not test any path-based algorithms. To economize onmemory,
such algorithms employ “column dropping” rules to store as few paths as possible. However,
such solutions have extremely low entropy (indeed, the most likely solution spreads flow
over as many paths as possible), and thus the specific path flow solution is untrustworthy for
further analysis; see the discussion and empirical results fromBar-Gera (2006) and Bar-Gera
and Luzon (2007). Since we wish to examine convergence of the path flows in the solution, it
is clearest to do so using an algorithm which converges to the (unique) entropy-maximizing
path flow solution, rather than an arbitrary path flow equilibrium.

Given a feasible solution (x, h) to TAP, we select five metrics for analysis. (Since
algorithms for TAP converge only in the limit, we do not demand optimal solutions to the
above problems.) The total system travel time (TSTT) expresses the sum of each vehicle’s
travel time in the network:

)()) (x) =
∑
(8, 9) ∈�

C8 9G8 9 (6.1)

Vehicle-miles traveled (VMT) expresses the total distance traveled by vehicles in the
network:

+") (x) =
∑
(8, 9) ∈�

;8 9G8 9 (6.2)

To measure convergence of these metrics, we calculate the relative difference be-
tween their values at the current solution x and the equilibrium solution x∗:

Δ)()) (x) = )()) (x) − )()) (x
∗)

)()) (x∗) (6.3)

Δ+") (x) = +") (x) −+") (x
∗)

+") (x∗) . (6.4)

Both TSTT andVMTare aggregatemetrics. To represent convergence of the specific
link and path flows themselves, we measure the proportion of links (or paths) within a given
relative threshold n of their equilibrium values. Let �∗n (x) denote the set of links with flows
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within this threshold:

�∗n (x) =
{
(8, 9) ∈ � :

���G8 9 − G∗8 9 ��� < nG∗8 9} . (6.5)

Let Π∗n (h) denote the set of paths whose flows are within this threshold:

Π∗n (h) =
{
c ∈ Π+(h∗) :

��ℎc − ℎ∗c �� < nℎ∗c} , (6.6)

where h∗ is the (entropy-maximizing) solution to the most likely path flows problem at
equilibrium. Note that Π∗n (h) is a subset of the used path set at equilibrium. Using these
sets, we define the proportion of unconverged links (PUL) as

%*! (x, n) = 1 − |�
∗
n (x) |
|�| , (6.7)

and the proportion of unconverged paths (PUP) as

%*%(h, n) = 1 − |Π
∗
n (h) |

|Π+(h∗) |
. (6.8)

Finally, we define the path set deviation (PSD) to represent how the set of used paths
converges to set of equilibrium paths by defining

%(� (h) = 1 − |Π+(h) ∩ Π+(h
∗) |

|Π+(h∗) |
. (6.9)

We thus have %(� = 1 if the set of currently used paths and the set of equilibrium paths is
disjoint, and %(� = 0 if every equilibrium path is in the current set of used paths. As with
the other metrics, it should decrease to zero over successive iterations.

Both %*% and %(� are calculated with respect to the used paths at equilibrium.
Some restriction of the path set is necessary, since the number of paths grows exponentially
with network size and the vast majority of these are unused. Such paths should not be
considered in our metrics, and we decided to measure %*% and %(� relative to the
equilibrium path sets to be consistent with the other metrics (which are measured relative
to the equilibrium link flows and most-likely path flows). Defining %*% only based on the
set of used paths at equilibrium is important because %*% is a relative error measure; any
path for which ℎ∗c = 0 would thus appear “unconverged” even with an infinitesimal flow
value. This is not a serious deficiency, because any solution placing positive flow on a
non-equilibrium path must also place the “wrong” value on at least one path in Π+(h∗) (by
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flow conservation), which would be detected by %*% with an appropriate n value.
These five metrics — Δ)()) , Δ+") , %*!, %*%, and %(�—are directly related

to practical applications of traffic assignment, and converge to zero as x and h approach
x∗ and h∗, respectively. However, they are not suitable convergence criteria because they
can only be evaluated if the equilibrium link flows or most-likely path flows are already
known, and there would be no need to solve TAP if this were true. Therefore, in practice,
convergence is measured using information available even at intermediate solutions.

The relative gap is one such measure. There are several definitions of relative
gap in common practice; we use the following one for our experiments, and later discuss
relationships with its alternatives. Let ^AB (x) denote the travel time on the shortest path
from origin A to destination B using the link travel times corresponding to x. The shortest
path travel time (SPTT) can then give the total travel time we would expect if all vehicles
were on shortest paths (as the UE condition requires):

(%)) (x) =
∑

(A ,B) ∈/2

^AB (x)3AB (6.10)

The gap and relative gap of a feasible solution, as defined in Rose et al. (1988), are:

60?(x) = (%)) (x) − )()) (x) (6.11)

and
'� (x) = − 60?(x)

(%)) (x) =
)()) (x)
(%)) (x) − 1 . (6.12)

Relative gap is non-negative, and equal to zero only at equilibrium solutions, and
thus is a valid gap function. Other gap metrics used for convergence include alternative
definitions of relative gap, average excess cost (���) and average total reduced cost. We
next define a variant of relative gap, the one used by Boyce et al. (2004), and ���, and
discuss their relationship with the '� definition of equation (6.12). This section contains a
brief mathematical discussion, and our results include an empirical comparison.

An alternate definition of relative gap ('� ′) normalizes the gap by a lower bound on
the optimal value of the Beckmann function in equation (1.1). The lower bound calculated
from a particular solution is given by

!�(x) =
∑
(8, 9) ∈�

∫ G8 9 (:)

0
C8 9 (G) 3G + 60?(x) , (6.13)
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and the best lower bound is the tightest bound over the flow vectors x1, x2, . . . , xk seen over
successive iterations thus far:

�!� = max
:
{!�(xk)} . (6.14)

The relative gap is then given by

'� ′(x) = −60?(x)|�!�| . (6.15)

The average excess cost is defined as

��� (x) = − 60?(x)∑
(A ,B) ∈/2 3AB

. (6.16)

Observe that the numerator of all three gap functions is the same, and they differ
only in how they are normalized. The ratio of ��� and '� equals the ratio of (%)) and∑
(A ,B) ∈/2 3AB, which is the average travel time on the all-or-nothing assignment. As (%))

stabilizes close to convergence, the ratio between ��� and '� will approach a constant
representing average travel time.

To compare '� and '� ′, we compare !� and (%)) , and see that their ratio is

!�(x)
(%)) (x) =

∑
(8, 9) ∈�

∫ G8 9
0 C8 9 (G) 3G

(%)) (x) + (%)) (x) − )()) (x)
(%)) (x) (6.17)

The second term in this equation is −'� (x), which approaches zero as equilibrium is
reached. To analyze the first term, we note that (%)) (x) and )()) (x) become asymptoti-
cally equal, and so ∑

(8, 9) ∈�
∫ G8 9

0 C8 9 (G) 3G
(%)) (x) ≈

∑
(8, 9) ∈�

∫ G8 9
0 C8 9 (G) 3G∑

(8, 9) ∈� G8 9 C8 9 (G8 9)
. (6.18)

On the right-hand side of equation (6.18), both the numerator and denominator include a
sum over links. For any specific link, the difference between its term in the numerator and its
term in the denominator is illustrated in Figure 6.1, which shows a typical link performance
function. The hatched area is the term in the numerator, whereas the area of the rectangle is
its term in the denominator. We see visually that these two areas are approximately equal.
To compare them numerically, consider a link for which C8 9 = C08 9 (1+0.15(G8 9/D8 9)4), where
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Figure 6.1: Visualization of '� and '� ′ ratio term

C0
8 9
and D8 9 are its free-flow time and “practical capacity,” respectively.1 When the link is

used relatively heavily (G8 9 = D8 9), the ratio between the areas is 0.89. Even when the link
is highly congested (G8 9 = 1.5D8 9), the ratio between the areas is 0.65, and the areas are of
the same order of magnitude. We thus expect the ratio !�(x)/(%)) (x) to be fairly close
to one, and thus '� and '� ′ to have a similar order of magnitude.

To summarize, we expect our results for '� (which will be given in terms of order
of magnitude) to translate more or less directly to '� ′, although the specific numerical
value may differ by up to 30%. To translate them to ���, one must multiply by the average
travel time in the network (whose order of magnitude can be estimated a priori). If travel
times are reported in minutes and the network represents a typical metropolitan region, we
would expect the ��� for a given solution to be one to two orders of magnitude higher than
the '�, and our results can be adapted accordingly. Our experiments below validate this
analysis numerically.

6.3 Data and Experiment Design

The main objective of this chapter is to determine the relationship between Δ)()) , Δ+") ,
%*!, %*%, and %(� (which carrymore practical meaning) and the corresponding '� level

1This is the commonly-used Bureau of Public Roads function with standard values for its shape parameters
Bureau of Public Roads (1964).
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(which can be calculated without knowing the equilibrium solution). We choose to index
these results to relative gap, rather than iteration count or another measure of progress,
because gap functions serve as an absolute measure of convergence that can be applied
regardless of algorithm or parameter settings.

This section explains the procedures we used to determine the relationship between
the five convergence metrics and relative gap. We first discuss the networks and algorithms
used, and choices of specific parameters. We next discuss how we obtained solutions of a
particular relative gap level for analysis.

The networks studied in this chapter are shown in Table 6.1 below, all obtained from
the Transportation Networks for Research repository (Stabler, 2019). More details about
these networks are provided in section 3.5.

Table 6.1: Description of networks used

Network name Zones Links Nodes Trips Average flow-to-capacity ratio

SiouxFalls 24 76 24 360,600 1.612
Eastern-Massachusetts 74 258 74 65,576 0.163
Anaheim 38 914 416 104,694 0.297
Chicago-sketch 387 2950 933 1,260,907 0.257
Berlin-Prenzlauerberg-Center 98 2184 975 23,648 0.121
Barcelona 110 2522 1020 184,679 1.137
Winnipeg 147 2836 1052 64,784 2.028
Terrassa 55 3264 1609 25,225,700 5.964
Austin 7388 18961 7388 739,351 0.875
Berlin-Center 865 28376 12981 168,222 0.092
Chicago-Regional 1790 39018 12982 1,360,427 0.522
Philadelphia 1525 40003 13389 18,503,872 0.949

Calculating Δ)()) , Δ+") , %*!, %*%, and %(� requires the equilibrium link
flow and most-likely path flow solutions. Near-equilibrium link flows x∗ and proportional
path flows h∗ were obtained using the TAPAS implementation by Perederieieva et al. (2015)
(with default settings for TAPAS parameters used to determine cost-effective PAS and flow-
effective PAS), setting a relative gap of 10−12 as the termination criterion. Our experiments
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will cover solutions over a range of gap levels between 10−3 and 10−8. Over this range,
we expect the distinction between using our reference solution with a gap of 10−12, and
an exact equilibrium, to be small. For calculating the proportions of unconverged links
and unconverged paths, we chose a threshold of n = 0.01, to be consistent with Boyce
et al. (2004). (The results contain a sensitivity analysis with respect to this parameter.) All
experiments were conducted on a machine with Ubuntu 18.04, 8 GB of memory and Intel
i5 processor @ 3.30 GHz.

Our analysis involves solutions at six target gap levels: 10−3, 10−4, 10−5, . . ., 10−8.
To facilitate comparison between different networks, we obtained solutions on each network
whose relative gap was within 10% of these levels (e.g., between 0.0009 and 0.0011 for
10−3). Obtaining solutions on each network with such specific gap levels is not trivial,
since algorithms for TAP are designed to reach equilibrium as rapidly as possible, and not
aim for a specific nonzero gap level. Therefore, we used the procedure described below to
generate solutions at a specified target gap level W. This procedure involves a hybrid of the
TAPAS implementation described above, and an implementation of Frank-Wolfe (Boyles,
2019) with ten bisection iterations per flow shift.

1. Run TAPAS with a termination criterion of W as relative gap. If the solution is in the
acceptable range [0.9W, 1.1W], return the link flows x and path flows h, along with the
values of Δ)()) , Δ+") , %*!, %*%, and %(�.

2. If the returned solution has a gap level less than 0.9W, examine the solution from the
previous iteration to see if it is in the acceptable range [0.9W, 1.1W]. If so, return the
link and path flows, and the five metrics, for that solution.

3. If neither of the above solutions is in the acceptable range, initialize Frank-Wolfe with
the TAPAS solution from the previous iteration. Perform iterations of Frank-Wolfe
until the gap is in the acceptable range [0.9W, 1.1W], and return that solution and the
corresponding metrics. Frank-Wolfe is used due to its relatively slow solution im-
provement, which leads to flow values within the desired gap range without “skipping
over.”

This process is repeated for each network and target gap level. This procedure worked for all
but seven scenario-'� value combinations, due to the Frank-Wolfe algorithm in the last step
jumping over the acceptable gap range. In these remaining cases, we repeated the last step,
restarting Frank-Wolfe algorithm with the prior flow pattern, but fewer bisection iterations.
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Our experiments are divided into the following analyses:

1. Identify the convergence rates of)()) ,+") , and path/link flows to their equilibrium
values using the procedure described above. We use both the base demand levels,
and adjusted demand levels to study how congestion levels affect the convergence of
these metrics. (This set of experiments is the most extensive, and is used as the basis
for our core recommendations.)

2. Repeating the analysis using Algorithm B (Dial, 2006) to investigate transferability
of results to algorithms besides TAPAS.

3. Repeating the analysis in a setting with toll roads and two user classes with distinct
values of time.

4. Investigating the effect of different convergence levels when evaluating candidate
solutions as a subproblem in network design, a bilevel program.

5. Comparison of the alternative gap measures '�, '� ′, and ��� so results can
be translated appropriately. The intent is to numerically validate the mathematical
analysis in the previous section, which involved several approximations.

For the second set of experiments, we used our own implementation of Algorithm
B; the source code is available at Boyles (2019). Aggregate metrics (TSTT, VMT) and PUL
were calculated from these experiments. The path-based metrics PUP and PSD were not
calculated, since Algorithm B does not aim to maximize entropy or provide a proportional
path flow solution.

For the third set of experiments, we introduced two user classes distinguished by their
value of time ($15/hr and $30/hr), and used the toll values given in the network instances,
where present. For networks without toll roads, we randomly selected 10% of links to be
tolled. These experiments used Algorithm B, as our implementation supports multi-class
assignment and the available TAPAS implementation does not.

For the fourth set of experiments, we formulated a network design problem, in which
a discrete set of links had to be chosen for “upgrade.” An upgrade increased a link’s capacity
by 50%, and had a cost proportional to its length. The budget allowed upgrading up to 5%
of the total length of all links, and the objective is to minimize )()) subject to equilibrium
constraints. This is a classic bilevel problem which is intractable to solve exactly. We thus
solved it heuristically, using the genetic algorithm implementation in the pyeasyga library
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(Remi-Omosowon, 2020). Such an algorithm involves solving a number of TAP instances
as subproblems to evaluate fitness of candidate solutions. We used the default values for
parameters in this library. For each network, we varied the '� level used for evaluating the
TAP fitness function. Each combination of objective function and '� level was solved five
times, and average performance reported.

For the fifth set of experiments, we calculate '�, '� ′, and ��� for the solutions
obtained in the previous analyses, and conduct a linear regression to investigate whether
'� ≈ '� ′, and that '� and ��� differ by a nearly constant multiplicative factor, as was
suggested by the approximate mathematical analysis in the previous section.

6.4 Results

This section reports the results from the experiments described above. Each set of results
is presented in its own subsection. Experiment 1 forms the core of our analysis, and is
described in the greatest detail. The remaining experiments are described more briefly,
highlighting key differences from the core analysis results. The Appendix for this chapter
contains detailed results, separated for each of the twelve networks under consideration.
The figures and tables in this section present summaries of this data, presenting the most
important findings from each experiment.

6.4.1 Experiment 1: Network metric behavior results

The values of the main convergence metrics (Δ)()) , Δ+") , %*!, %*%, and %(�) are
shown in Figures 6.2–6.4 (presented according to network and size), and in Figures 6.5–6.9
(presented according to each metric). In the latter set of figures, the thin lines represent
the values of each metric in one of the twelve networks tested, and the thick line represents
the average value. Both sets of figures use logarithmic axes both for the relative gap, and
for each metric, to focus on the orders of magnitude in these values. Table 6.2 shows the
numerical values of the metric means, as well as the highest and lowest values seen at a
particular level across all networks. The raw data, containing the specific values for over all
twelve networks, is found in Table A.4 in the Appendix.
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Figure 6.2: Stabilization behaviour of metrics at default demand, small networks

114



Figure 6.3: Stabilization behaviour of metrics at default demand, medium networks
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Figure 6.4: Stabilization behaviour of metrics at default demand, large networks
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Figure 6.5: ΔTSTT trends for different gap levels
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Figure 6.6: ΔVMT trends for different gap levels
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Figure 6.7: PUL trends for different gap levels

119



Figure 6.8: PUP trends for different gap levels
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Figure 6.9: PSD trends for different gap levels

121



Ta
bl
e
6.
2:

M
et
ric

sta
bi
liz

at
io
n
be
ha
vi
or

da
ta
(a
ve
ra
ge
)u

si
ng

TA
PA

S

Δ
TS

TT
Δ
V
M
T

PU
L

G
ap

Le
ve
l

M
in

M
ea
n

M
ax

M
in

M
ea
n

M
ax

M
in

M
ea
n

M
ax

G
ap

Le
ve
l

1E
-0
3

1.
72
%

2.
56
%

4.
05
%

1.
01
%

1.
93
%

2.
84
%

4.
89
%

8.
46
%

18
.2
3%

1E
-0
3

1E
-0
4

0.
76
%

1.
26
%

2.
02
%

0.
46
%

0.
92
%

1.
52
%

2.
22
%

3.
92
%

8.
10
%

1E
-0
4

1E
-0
5

0.
20
%

0.
65
%

1.
52
%

0.
10
%

0.
46
%

1.
27
%

0.
77
%

1.
07
%

1.
52
%

1E
-0
5

1E
-0
6

0.
10
%

0.
42
%

1.
01
%

0.
07
%

0.
33
%

0.
76
%

0.
00
%

0.
58
%

0.
91
%

1E
-0
6

1E
-0
7

0.
05
%

0.
19
%

0.
66
%

0.
03
%

0.
14
%

0.
46
%

0.
00
%

0.
21
%

0.
49
%

1E
-0
7

1E
-0
8

0.
02
%

0.
07
%

0.
30
%

0.
01
%

0.
03
%

0.
10
%

0.
00
%

0.
07
%

0.
20
%

1E
-0
8

PU
P

PS
D

G
ap

Le
ve
l

M
in

M
ea
n

M
ax

M
in

M
ea
n

M
ax

G
ap

Le
ve
l

1E
-0
3

6.
08
%

18
.0
7%

48
.6
0%

8.
10
%

15
.4
1%

30
.3
8%

1E
-0
3

1E
-0
4

2.
03
%

7.
19
%

17
.2
1%

3.
04
%

7.
63
%

18
.2
3%

1E
-0
4

1E
-0
5

1.
01
%

2.
93
%

5.
26
%

1.
25
%

3.
47
%

8.
10
%

1E
-0
5

1E
-0
6

0.
41
%

1.
04
%

2.
03
%

0.
51
%

1.
06
%

2.
03
%

1E
-0
6

1E
-0
7

0.
23
%

0.
56
%

1.
01
%

0.
13
%

0.
53
%

1.
01
%

1E
-0
7

1E
-0
8

0.
04
%

0.
11
%

0.
26
%

0.
04
%

0.
22
%

0.
56
%

1E
-0
8

122



All five metrics converged at roughly similar rates, despite significant differences in
the size and congestion level of the networks tested. This is encouraging from the standpoint
of providing transferable, practical advice on convergence thresholds.

In all of the networks, the aggregate metrics ()()) and+")) are already very near
stabilization at a relative gap of 10−3. For the small and medium networks, these values
are within 1% of the equilibrium values when the relative gap is 10−4, and for the large
networks they are within 2%. Both Δ)()) and Δ+") converge at roughly similar rates,
but Δ+") is usually slightly lower at a particular gap level. We believe this is because
the link lengths are constant, and thus only the flows are changing between iterations when
calculating+") . By contrast, the calculation of )()) involves flows and travel times, both
of which are changing.

The proportion of unconverged links was the metric originally studied by Boyce
et al. (2004) for the Philadelphia regional network. They found that a gap of 10−4 was
required to approach convergence for freeway links, defining convergence as a %*! of 1%
or less. To achieve this level of convergence for arterial links as well as freeway links, a
relative gap of 10−5 was needed. Our results show that this latter conclusion generally holds
across the other networks tested, and that 99% of link flows are accurate to within 1% of
equilibrium values at this gap level.

Link flow behavior for multiple n thresholds can be seen in Figure 6.10. Trends
are similar within network size grouping, and variations therein are caused by differing
congestion levels. For instance, Austin and Philadelphia show similar proportion of links
in various relative error regimes, but Winnipeg and Chicago Sketch differ due to higher
congestion on theWinnipeg network. This also relates to the relationship between congestion
level and stabilization, explored later.

The remaining two metrics (proportion of unconverged paths and path set deviation)
are the last to stabilize. Relative gap levels of 10−6 were needed before these metrics
decreased to 1% or less. We believe this occurs because the number of used paths grows
quickly with network size. For instance, in the Philadelphia network, the equilibrium
solution uses over 300 million paths. Most of these paths necessarily have small flow, and
changes in even a single link will change the flows across many paths.

Table 6.3 shows how the values of %*% vary across networks for different choices
of n , for a fairly converged solution of '� = 10−6. This allows us to see the distribution of
path convergence, similar to Figure 6.10 for links. We see that virtually all paths (≈98%) are
within 1% of their equilibrium values; almost all (≈95% or more) are within 0.1% of their
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Figure 6.10: Link flow trends for various n thresholds
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Table 6.3: PUP sensitivity analysis w.r.t. n

Sensitivity analysis for PUP(n) (RG level of 10-6)

Net
n 0.0001 0.001 0.01 0.1

Sioux Falls 7.02% 2.24% 0.91% 0.05%
Anaheim 4.53% 1.38% 0.41% 0.02%

Chicago Sketch 8.92% 3.30% 1.01% 0.03%
Winnipeg 5.42% 1.85% 0.67% 0.01%
Austin 9.18% 3.79% 1.01% 0.06%

Philadelphia 14.23% 5.41% 2.03% 0.17%

Table 6.4: Entropy values for varying '� values

Chicago-Regional Philadelphia
Relative Gap AlgB TAPAS AlgB TAPAS

1E-03 370,682.16 850,027.30 2,609,915.27 4,797,572.35
1E-04 380,578.59 863,914.76 2,654,382.74 4,958,732.03
1E-05 389,116.51 885,997.08 2,724,551.75 5,054,152.48
1E-06 395,337.48 898,332.39 2,783,409.60 5,137,311.26
1E-07 397,353.30 908,074.29 2,793,543.55 5,189,488.01
1E-08 397,600.29 919,463.21 2,794,690.11 5,218,702.51
1E-12 397,654.25 920,159.60 2,794,750.93 5,226,184.24

equilibrium values; and the significant majority (> 85%) are within 0.01%. A negligible
number of paths (roughly one in a thousand) remain more than 10% from their equilibrium
values.

Table 6.4 provides the entropy values for Chicago-Regional and the Philadelphia
networks at various '� levels. The entropy values show a clear increasing and convergent
trend towards the final entropy value for each network-algorithm pair. Thus, as the network
flow stabilizes, it tends to increase entropy, regardless of the algorithm used. As path flow
patterns are intricately linked to entropy values, it stabilizes to within 1% of the convergence
value at a '� level of 10−6 and below, in line with the observed behavior of PUP and PSD
metrics.

We further investigate how path flows converge on the largest networks, by showing
how the number of used paths stabilizes on the Chicago Regional and Philadelphia networks
at convergence levels up to 10−12 relative gap. This is shown in Table 6.5. We see that the
number of used paths increases with the solution precision, but that this number appears to
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Table 6.5: Used paths (in millions) for various relative gap values

Gap Level Chicago Regional Philadelphia
1E-03 86.877 352.014
1E-04 88.819 358.008
1E-05 91.837 371.205
1E-06 91.482 368.607
1E-07 91.866 369.873
1E-08 91.895 369.998
1E-12 92.265 370.108

Table 6.6: Metric stabilization behavior data (average) for Algorithm B

ΔTSTT ΔVMT PULGap Level TAPAS AlgB TAPAS AlgB TAPAS AlgB
1E-03 2.56% 2.38% 1.93% 1.73% 8.46% 7.57%
1E-04 1.26% 1.13% 0.92% 0.83% 3.92% 3.57%
1E-05 0.65% 0.56% 0.46% 0.38% 1.07% 0.98%
1E-06 0.42% 0.34% 0.33% 0.26% 0.58% 0.54%
1E-07 0.19% 0.14% 0.14% 0.09% 0.21% 0.21%
1E-08 0.07% 0.04% 0.03% 0.02% 0.07% 0.06%

converge, perhaps to the number of used paths at the exact equilibrium.

6.4.2 Experiment 2: Algorithm B comparison

The second experiment was performed using Algorithm B, to test transferability of the
results to other traffic assignment algorithms. The results are summarized in Table 6.6,
which compares the average values of each metric between TAPAS and Algorithm B.

The full data from these results are shown in Tables A.5 (raw data for Algorithm B)
and A.6 (for a side-by-side comparison) in the Appendix. The path-based metrics are not
computed or compared in this experiment, since Algorithm B does not attempt to provide a
most likely path flow solution, and therefore its path flow results cannot be fairly compared
to those of TAPAS (and indeed should not be used in practice, as with any other path flow
solution which does not have high entropy).

The trends are very similar between the two algorithms, and the values of eachmetric
are always of the same order of magnitude, and almost always nearly identical numerically.
This finding is encouraging, suggesting that the conclusions of Experiment 1 are applicable
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Table 6.7: Metric stabilization behavior data (average) for single-class and multi-class
Algorithm B

ΔTSTT ΔVMT PULGap Level TAPAS Multiclass TAPAS Multiclass TAPAS Multiclass
1E-03 2.56% 2.37% 1.93% 1.68% 8.46% 7.27%
1E-04 1.26% 1.01% 0.92% 0.77% 3.92% 3.37%
1E-05 0.65% 0.52% 0.46% 0.37% 1.07% 0.96%
1E-06 0.42% 0.32% 0.33% 0.26% 0.58% 0.52%
1E-07 0.19% 0.12% 0.14% 0.09% 0.21% 0.19%
1E-08 0.07% 0.04% 0.03% 0.03% 0.07% 0.06%

to other algorithms, and that the relative gap is a good universal measure of convergence,
regardless of the specific assignment algorithm.

6.4.3 Experiment 3: Heterogeneous driver results

The third experiment divided the travel demand into two groups with different values of
time, introducing tolls on 10% of the network links. Table 6.7 compares the values of
each metric between the base case (Experiment 1) and this two-class setting. Raw data is
shown in Table A.7 in the Appendix. Since these experiments were performed using our
implementation of Algorithm B, path-based metrics are not computed or compared for the
same reasons as in Experiment 2.

All three metrics behave extremely similar to single-class Algorithm B experiment
metric behavior, indicating that the presence of multiple user classes does not significantly
affect the convergence rates of these metrics.

6.4.4 Experiment 4: Network design application results

Our fourth experiment investigated the effects of subproblem precision in the network design
problem, a bilevel program. In this experiment set, we varied the '� threshold used in the
TAP solutions used in the lower level of this optimization problem, ranging from 10−3 to
10−8), for minimizing TSTT. The resulting solutions at the end of the heuristic were then
evaluated to a gap of 10−8 to compare their performance with a “benchmark” solution to the
network design problem with solved all of its subproblems to a gap of 10−8.

Figure 6.11 shows the gap between the objective function values with the subprob-
lems solved at a looser gap to those with 10−8 (measured by the percentage difference), and
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Figure 6.11: Network design performance with varying RG levels
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Table 6.8: Regression of '� ′ and ��� with '�

Network RG’ AEC
Coefficient Intercept '2 Coefficient Intercept '2

Sioux Falls 0.716 0.000 0.999 22.301 0.000 0.999
Anaheim 1.023 0.000 0.999 6.923 0.000 0.999
Chicago Sketch 0.968 0.000 0.999 27.565 0.000 0.999
Barcelona 0.913 0.000 0.999 8.935 0.000 0.995
Austin 1.008 0.000 0.999 7.819 0.000 0.998
Philadelphia 0.974 0.000 0.999 18.276 0.000 0.999

the computation times (reported as the fraction of time taken when solving all subproblems
to 10−8). The plotted values are averaged over five solutions of the genetic algorithm, which
operates randomly.

For the higher convergence levels, there was no objective function gap, because the
best-found solutions involved expanding the same set of links as in the solution for a gap
of 10−8. At these gap levels (around 10−6 or 10−7), there was no advantage in solving the
subproblems further. When the subproblems are solved to a relative gap of 10−4 or tighter,
the objective function was within 2% of the benchmark value, and run times were decreased
by 40–60%. This may be acceptable in certain applications, given the uncertainty in other
components of the planning process (model specification, demand forecasting, etc.).

6.4.5 Experiment 5: Gap function comparison

The fifth experiment set compared the values of three gap functions for the solutions obtained
in the previous experiments: '�, '� ′, and ���. Linear regressions were performed on
'� ′ vs. '�, and ��� vs. '�, with the results shown in Table 6.8.

The two definitions of relative gap ('� ′ and '�) are nearly identical, as shown by
'2 values greater than 0.999, an intercept of essentially zero, and a coefficient close to one.
This confirms the analysis at the end of Section 6.2, and suggests that our conclusions can
be equally applied regardless of which relative gap definition is being used.

We also observe that the ratio between ��� and '� is essentially constant within
each network ('2 > 0.99 and essentially zero intercept). As expected, this constant differs
by network, as it reflects the average travel time on the shortest path available to travelers.
For the sizes of networks used in common practice, and for the common choice of minutes
as the unit for travel time, we see that ��� is roughly an order of magnitude larger than
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'�. This suggests that our conclusions can be readily transferred to the ��� gap measure
by translating them accordingly.

6.5 Conclusions

We studied the convergence rate of five metrics as the relative gap reduces over succes-
sive iterations of traffic assignment, in twelve networks of varying size and congestion
levels. Across these networks, we observed trends for network metric behavior which are
summarized below:

• The aggregate metrics (total system travel time and vehicle-miles traveled) were
within 1% of their equilibrium values once the relative gap was below 10−4 (earlier
for smaller networks)

• Link flows achieved stability (less than 1% of the links more than 1% away from
equilibrium values) at a relative gap of 10−5.

• Path flows and the sets of used paths stabilized later, at a relative gap of 10−6.

• The above conclusions were seen whether TAPAS or Algorithm B was used to solve
for equilibrium, and for both single and two-class assignments.

• In the network design problem, solving the subproblems to a gap level of 10−4

instead of 10−8 increased the objective function value by less than 2%, but decreased
computation time by 40–60%.

• There are strong linear relationship between '�, '� ′ and ��� ('2 > 0.99). This
indicates the transferability of results between different gap metrics: '� and '� ′

can essentially be used interchangeably, whereas ��� differs from '� by a constant
multiple representing average travel time.

The main limitations of the work are (1) that we propose no underlying theory to
explain these findings, but present the analysis empirically; and (2) that we restrict our
investigation to absolute levels of accuracy, as if a point prediction were sought for a single
scenario in isolation. It is also unclear whether this guidance can be generalized to other
traffic models, such as dynamic traffic assignment.

Future research should address all of these issues. In particular, regarding (1), the
consistent convergence trends across very different networks (spanning several orders of

130



magnitude in both size and congestion level) suggest that there may be a more fundamental
relationship between relative gap and these metrics. It may be possible to derive analyt-
ical relationships describing such a relationship, at least in stylized settings that roughly
approximate practical traffic networks. While the current empirical results span a variety
of network sizes and congestion levels to provide meaningful trends and useful guidelines
to practitioners and researchers, theoretical bounds shall help generalize the findings of this
study.

Regarding (2), another common application involves comparison of multiple al-
ternatives or scenarios, where it is important to determine a stable ranking (or at least a
preferred alternative). It would be valuable to see what gap levels are needed before project
rankings become stable, although such a gap level would depend critically on how distinct
the project impacts are, and a careful investigation is needed to account for this factor.
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Chapter 7

Conclusion

This dissertation explored and extended the traffic assignment problem. Chapter 3 studied
the symmetric traffic assignment problem and convergence of solution methods. Chapter 4
applied these findings to a real world application of rail network electrification. Chapters 5
and 6 dealt with investigations of robustness and convergence behavior of classic TAP (i.e.,
without link interactions) using extensive empirical experiments.

7.1 Contributions

7.1.1 TAP with symmetric link interactions

We formulated the equilibrium problem as a convex program, and discussed the resulting
features of solution existence, uniqueness, and algorithmic tractability. Specifically, we
conducted the following experiments:

1. As an example of how existing node models can be approximated by symmetric,
monotone link performance functions, we developed a representation of the Jin-Zhang
merge model (Jin and Zhang, 2003) from the dynamic traffic assignment literature
using symmetric, monotone link performance functions.

2. We discussed solution algorithms for S-TAP, including classic convex combinations
methods, but focused primarily on more recent algorithms based on shifting flow
between a pair of alternative segments. We showed that the flow shift formula for
S-TAP takes a familiar and simple form, and therefore existing algorithms for TAP can
be easily adapted for S-TAP while retaining their theoretical convergence guarantees.
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3. We implemented these algorithms on standard test networks, and showed that in most
cases, S-TAP actually converged faster than the separable TAP. Therefore, S-TAP
can be considered as a serious alternative to TAP in planning practice. We also
reported results showing good performance of gradient projection for asymmetric
link interactions, even though there is no convex objective function (and therefore no
guarantees of convergence).

4. We studied the behavior of network metrics for different convergence levels, and
identified thresholds for practical algorithm convergence.

These findings were then used to formulate a rail network electrification problem,
where the interaction between electrified and non-electrified flowwas modeled using S-TAP.
The problemwas formulated as a bi-level optimization problem, and we presented a solution
heuristic for the problem based on findings from Chapter 3. We also solved this problem on
a large-scale network representing the North American rail system, and analyzed the results
to identify crucial corridors and recommend corridor electrification.

7.1.2 Classic TAP

TAP is a well-studied problem. We first studied the behavior of TAP under input uncertainty.
Specifically, we concluded the following:

1. We characterized the effect of three types of demand errors (uniform, OD-specific,
and spatially correlated errors) on equilibrium system travel time, system congestion,
and vehicle miles traveled.

2. We then used these findings to compare forecast and observed demand growth on a
large case study network to demonstrate potential usage for planning purposes

Second, we studied the convergence behavior of important network metrics. We
considered network level metrics (TSTT, VMT) as well as link/path level metrics (link set
and path set convergence metrics). We examined the rates of convergence of these metrics
compared to that of relative gap, a common convergence metric, and identified trends based
on network size and congestion level. Our experiments also included tests of different traffic
assignment algorithms, and examining a scenario with heterogeneous user classes. We also
compared alternative gap functions in current use, suggesting how our results for one gap
function can be translated to these alternatives.
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7.2 Future Work

S-TAP is a step towards generalizing static TAP and bringing it closer to the general nature
of dynamic TAP and micro-simulation approaches. While our work is a good first step
towards showing the feasibility of this idea, a lot of exploration is needed in the areas
of appropriate cost functions, integration of other interaction types, solution methods for
asymmetric TAP, and related error bounds. Additionally, the robustness of these problems
and solution methods towards input uncertainty as well as demand elasticity should be
investigated. Similarly, we show but one practical application of S-TAP. Wider adoption of
S-TAP for different applications will automatically give rise to future research directions in
those domains.

Our contributions to the TAP literature would also benefit from an alternative ap-
proach, i.e., theoretical bounds on the errors in the results as well as convergence levels.
Our work is primarily empirical in nature, with some theoretical backing. However, work in
the realm of error bounds, especially using VI theory, would be greatly beneficial towards
solidifying our results and advancing the field.
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